An Introduction to Reinforcement Learning

Ludwig Winkler

Machine Learning Group TU Berlin

August 27, 2017

Ludwig Winkler

An Introduction to Reinforcement Learning

August 27, 2017 1 / 34

Outline

Intuition

Notation

Model-Based Reinforcement Learning Value function Bellman Equation

Model-Free Reinforcement Learning Temporal Difference Learning Multi-step Methods Q-Value Function On- & Off-Policy Methods Exploration-Exploitation

Approximate Reinforcement Learning Value Function Approximation Policy Gradients Actor-Critic Methods End-to-End Reinforcement Learning

()

Intuition

- In between supervised and unsupervised learning
- Take <u>actions</u> in an <u>environment</u> that <u>maximize reward</u>
 - $\bullet \ \ \mathsf{Actions} \mapsto \mathsf{Policy}$
 - $\circ \ \ \mathsf{Environment} \mapsto \mathsf{States}$
 - $\circ \ \mathsf{Reward} \mapsto \mathsf{Feedback} \ \mathsf{from} \ \mathsf{environment}$

Notation

Action $a \in \mathcal{A}$ $s \in S$ State Policy $\pi(a|s)$ $T(s_i|s_i, a_k)$ Transition model Reward function $R(s_i, a_k)$ Value function $V(s_i)$ $Q(s_i, a_k)$ Action-Value function $\gamma \in [0,1)$ Discount factor $\eta \in \mathbb{R}^+$ Learning rate

-

< 4 → <

Markov Decision Processes

- Markov Property: Future is independent of the past given the present
- Policy: $\pi(a_k|s_i)$
 - Probability of taking action a_k in state s_i
- Transition model: $T(s_j|s_i, a_k)$
 - Probability of going to next state s_i given action a_k in state s_i
- Reward model: $R(s_i, a_k)$
 - Reward for taking action a_k in state s_i
- Discount factor γ
 - Difference of importance between future and present rewards
- MDP: 5-Tuple $(S, A, T(s_j | s_i, a_k), R(s_i, a_k), \gamma)$

イロト 不得下 イヨト イヨト

Value function

Value function

- Estimation of future rewards following policy π from state $s^{(0)}$
- Geometric weighting of future rewards
- Expected infinite sum of discounted future rewards:

$$V^{\pi}(s^{(0)}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s^{(t)}, a^{(t)}) \middle| \begin{array}{c} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array}\right], \gamma \in [0, 1)$$

< ロト < 同ト < ヨト < ヨ

Value Function - Grid World Example

э

<ロ> (日) (日) (日) (日) (日)

Bellman Equation

Knowledge of environment to construct T(s_j|s_i, a_k) and R(s_i, a_k)
V^π(s_i) is the future, discounted reward expected in state s_i = s⁽⁰⁾:

$$V^{\pi}(s_i) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$

(日) (同) (三) (三)

Bellman Equation

Knowledge of environment to construct T(s_j|s_i, a_k) and R(s_i, a_k)
V^π(s_i) is the future, discounted reward expected in state s_i = s⁽⁰⁾:

$$V^{\pi}(s_i) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$
$$= \mathbb{E}\left[R(s^{(0)}, a^{(0)}) \middle| a^{(0)} \sim \pi(\cdot|s) \right]$$
$$+ \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$

(日) (同) (三) (三)

Bellman Equation

Knowledge of environment to construct T(s_j|s_i, a_k) and R(s_i, a_k)
V^π(s_i) is the future, discounted reward expected in state s_i = s⁽⁰⁾:

$$V^{\pi}(s_i) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$
$$= \mathbb{E}\left[R(s^{(0)}, a^{(0)}) \middle| a^{(0)} \sim \pi(\cdot|s)\right]$$
$$+ \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$
$$= \mathbb{E}_{\pi}\left[R(s^{(0)}, a^{(0)})\right] + \gamma \mathbb{E}_{\pi}\left[V^{\pi}(s^{(1)}) \middle| s^{(1)} \sim T(\cdot|s, a) \right]$$

Ludwig Winkler

< 口 > < 同 > < 三 > < 三

Bellman Equation

Knowledge of environment to construct T(s_j|s_i, a_k) and R(s_i, a_k)
V^π(s_i) is the future, discounted reward expected in state s_i = s⁽⁰⁾:

$$\begin{aligned} V^{\pi}(s_{i}) &= \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right] \\ &= \mathbb{E}\left[R(s^{(0)}, a^{(0)}) \middle| a^{(0)} \sim \pi(\cdot|s) \right] \\ &+ \gamma \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} a^{(t)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right] \\ &= \mathbb{E}_{\pi}\left[R(s^{(0)}, a^{(0)}) \right] + \gamma \mathbb{E}_{\pi}\left[V^{\pi}(s^{(1)}) \middle| s^{(1)} \sim T(\cdot|s, a) \right] \\ &= \sum_{k=1}^{A} \pi(a_{k}|s_{i}) \left(R(s_{i}, a_{k}) + \gamma \sum_{j=1}^{S} T(s_{j}|s_{i}, a_{k}) V^{\pi}(s_{j}) \right) \end{aligned}$$

Ludwig Winkler

Bellman Equation

$$V^{\pi}(s_i) = \sum_{k=1}^{A} \pi(a_k | s_i) \left(R(s_i, a_k) + \gamma \sum_{j=1}^{S} T(s_j | s_i, a_k) V^{\pi}(s_j) \right)$$
$$= \sum_{\substack{k=1 \ \text{policy controlled reward } R^{\pi}}^{A} + \gamma \sum_{j=1}^{S} \sum_{k=1}^{A} \pi(a_k | s_i) T(s_j | s_i, a_k) V^{\pi}(s_j) V^{\pi}(s_j)$$

• Can be solved analytically:

$$V^{\pi} = R^{\pi} + \gamma \ T^{\pi} \ V^{\pi} \Leftrightarrow V^{\pi} = (I - \gamma T^{\pi})^{-1} R^{\pi}$$

• Or via value iteration:

$$V^{\pi} \leftarrow R^{\pi} + \gamma \ T^{\pi} V^{\pi}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Model-based Reinforcement Learning

• Bellman operator $\widehat{B}^{\pi}[V^{\pi}]$ is a contraction mapping

$$\widehat{B}^{\pi}[V^{\pi}] = R^{\pi} + \gamma \ T^{\pi}V^{\pi}$$

- Optimal policy π^* can be derived from $V^{\pi^*}(s)$
 - Take action that such that next state has highest value
- Requires explicit transition and reward function for all states
 - Heat dissipation formulas for engine control
 - Avionic formulas for helicopter control

Model-Free Methods

- What if transition and reward functions are unknown?
- Agent has to learn by interacting with the environment
- Instead of being provided with model, agent builds its own model

Temporal Difference Learning - TD(0)

• Iterative difference between state values

$$\widehat{V}^{\pi}(s^{(t)}) \leftarrow \widehat{V}^{\pi}(s^{(t)}) + \eta \Big[\underbrace{\underbrace{R(s^{(t)}, a^{(t)}) + \gamma \widehat{V}^{\pi}(s^{(t+1)})}_{\text{TD-Error } \Delta \widehat{V}^{\pi}(s)} \Big]^{\text{Boot-strapped Backup}}_{\text{TD-Error } \Delta \widehat{V}^{\pi}(s)} \Big]$$

• $\gamma \widehat{V}^{\pi}(s^{(t+1)})$ serves as an estimate for remaining future rewards $\gamma R(s^{(t+2)}, a^{(t+2)}) + \gamma^2 R(s^{(t+3)}, a^{(t+3)}) + \dots$

- Influence of learning rate η :
 - Large η : fast learning, large variance
 - Small η : slow learning, small variance
 - Decaying learning rate not practical due to non-stationarity

イロト イポト イヨト イヨト 二日

Temporal Difference Learning - Value Propagation

• Example:

- 10 states, 1 action (forward)
- Reward in last state
- $\circ \gamma = 0.9$
- \circ $\eta = 1$, $\eta = 0.5$
- Value Propagation requires:
 - 10 rounds for $\eta = 1$
 - 26 rounds for $\eta = 0.5$
- Source:[1]

n-step Temporal Difference Learning

- TD(0) uses only immediate next reward
- Temporal difference can be extended over *n*-steps

$$G_n^{(t)} = \sum_{\tau=0}^{n-1} \gamma^{\tau} R(s^{(t+\tau)}, a^{(t+\tau)}) + \gamma^n \widehat{V}^{\pi}(s^{(t+n)})$$

e.g. $G_1^{(t)} = R(s^{(t+1)}, a^{(t+1)}) + \gamma \widehat{V}^{\pi}(s^{(t+1)})$
 $G_2^{(t)} = R(s^{(t+1)}, a^{(t+1)}) + \gamma R(s^{(t+2)}, a^{(t+2)}) + \gamma^2 \widehat{V}^{\pi}(s^{(t+2)})$
....

• $\gamma^n \widehat{V}^{\pi}(s^{(t+n)})$ as estimate for future rewards at time steps t > n

イロト イポト イヨト イヨト 二日

n-step Temporal Difference Learning & $TD(\lambda)$

• Value function is updated with *n*-step return $G_n^{(t)}$

$$\widehat{V}^{\pi}(\boldsymbol{s}^{(t)}) \leftarrow \widehat{V}^{\pi}(\boldsymbol{s}^{(t)}) + \eta \Big[\underbrace{G_{n}^{(t)} + \gamma^{n} \widehat{V}^{\pi}(\boldsymbol{s}^{(t+n)})}_{\text{TD-Error } \Delta \widehat{V}^{\pi}(\boldsymbol{s})}^{n-step \text{ Backup}} \Big]$$

• Use weighted mean with decaying weights

$$G_{\lambda}^{(t)} = (1 - \lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} R(s^{(t+\tau)}, a^{(t+\tau)}) \qquad , \lambda \in [0, 1)$$

- Smaller λ favor more immediate rewards
- Practically rewards are considered until $\lambda^ aupprox$ 0

$\mathsf{TD}(\lambda)$ & Eligibility Traces

- Cumbersome *forward* calculation of $G_n^{(t)}$ for each step t
- Backward view $\mathsf{TD}(\lambda)$ with eligibility traces more efficient

$$\widehat{V}^{\pi}(s) = \widehat{V}^{\pi} + \eta \ e^{(t)}(s) \left(R(s^{(t)}, a^{(t)}) + \gamma \widehat{V}^{\pi}(s^{(t+1)}) - \widehat{V}^{\pi}(s^{(t)}) \right)$$
$$e^{(t)}(s) = \begin{cases} \gamma \lambda e^{(t-1)}(s) & \text{if } s \neq s^{(t)} \\ \gamma \lambda e^{(t-1)}(s) + 1 & \text{if } s = s^{(t)} \end{cases}$$

• 'Measures how eligible a state is for the accumulated reward'

$\mathsf{TD}(\lambda)$ - Value Propagation

- Example:
 - 10 states, 1 action (forward)
 - Reward in last state
 - $\circ \ \gamma = 1, \eta = 1$
- Value Propagation requires:
 - 1 round for $\lambda = 1$
 - 4 rounds for $\lambda = 0.9$
 - 7 rounds for $\lambda = 0.5$
 - 10 rounds for $\lambda = 0$
- Source: [1]

Q-Value Function

Q-Value function

- $V^{\pi}(s_i)$ only provides state values
 - No information about value of possible actions a_k
- $Q^{\pi}(s_i, a_k)$ provides value for action a_k in state s_i

$$Q^{\pi}(s_i, a_k) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R(s^{(t)}, a^{(t)}) \middle| \begin{array}{l} s^{(0)} = s_i; a^{(0)} = a_k \\ a^{(t+1)} \sim \pi(\cdot|s) \\ s^{(t+1)} \sim T(\cdot|s, a) \end{array} \right]$$

• More expressive but also more data needed

A (10) A (10)

SARSA

• TD(0) learning for Q-values with TD-Errors

$$\widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \eta(\underbrace{\overbrace{R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)})}^{\text{Boot-strapped Back-up}} - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})})_{\text{TD-Error } \Delta \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})})$$

- SARSA(λ) with multi-step methods
- On-Policy learning
 - Behavior and evaluation policy are the same
 - Behavior policy: Taking steps according to \widehat{Q}^{π}
 - Evaluation policy: Evaluate discounted temporal difference

Q-Learning

Off-Policy learning

- Behavior and evaluation policy are different
- $\,$ o Behavior policy: Taking steps according to some policy π
- Evaluation policy: Evaluate against maximum Q-Value
- · Greedy evaluation but 'curious' behaviour

 $\,\circ\,$ Q-Learning finds optimal policy π^* independent of behavioral policy

$$\widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \eta \Big(\underbrace{\underbrace{R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \max_{\boldsymbol{a}^{(t+1)}} \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)})}_{\text{TD-Error } \Delta \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})} - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})}\Big)$$

• $Q(\lambda)$ with multi-step methods

4 A N A H N A

Exploration-Exploitation Dilemma

- · Exploiting known policy vs exploring better policies
- Yet unknown policy might yield even higher rewards
- Sampling strategy should balance both
- Find expected rewards of policy with high values
- Find potential reward of policy of alternative actions

・ 同 ト ・ ヨ ト ・ ヨ ト

Exploration-Exploitation Dilemma - ϵ -greedy and softmax

• ϵ -greedy policy: Exploration controlled with parameter $\epsilon \in [0,1]$

$$a = \begin{cases} \max_{a'} \widehat{Q}^{\pi}(s, a') & \text{with probability } 1 - \epsilon \\ \text{Random } a & \text{with probability } \epsilon \end{cases}$$

- The larger ϵ the more random actions are taken
- Softmax policy: Exploration controlled with parameter $\beta \in \mathbb{R}^+$

$$\pi(a|s) = rac{\exp(eta \ \widehat{Q}^{\pi}(s,a))}{\sum_{a'}^{A} \exp(eta \ \widehat{Q}^{\pi}(s,a'))}$$

- The smaller β the more random actions are taken
- Decreasing exploration over time for agent

Exploration-Exploitation Dilemma - Optimistic Initialization

- Initialize all Q-Values with high values
- Unexplored actions are all very attractive
- TD-Error $\Delta \widehat{V}^{\pi}(s)$ can be negative

$$\Delta \widehat{Q}^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)}) - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})$$

- Initially slower, but faster convergence to limit
- Works with SARSA(λ) and Q(λ)-Learning

Approximate Reinforcement Learning

- Previous methods worked all tabular
- Not recommendable for large or continuous state-action spaces
 - Board game Go on 19 \times 19 board: $3^{19\times19}\approx10^{172}$
 - Autonomous helicopter control is continuous
- Generalization is required for more complex problems
- Wide catalogue of function approximations available, but
 - Non-stationarity
 - Delayed targets
 - Boot-strapping

Value Function Approximation

- Parameterization of value function with θ : $\widehat{V}^{\pi}(s; \theta)$
- Minimize MSE between approximation $\widehat{V}^{\pi}(s; \theta)$ and true $V^{\pi}(s)$

$$J(oldsymbol{ heta}) = \mathbb{E}_{\pi}\left[\left(V^{\pi}(oldsymbol{s}) - \widehat{V}^{\pi}(oldsymbol{s};oldsymbol{ heta})
ight)^2
ight]$$

• Gradient descent finds the local minimum

$$egin{aligned}
abla_{m{ heta}} J(m{ heta}) &=
abla_{m{ heta}} \mathbb{E}_{\pi} \left[\left(V^{\pi}(m{s}) - \widehat{V}^{\pi}(m{s};m{ heta})
ight)^2
ight] \ &= 2 \; \mathbb{E}_{\pi} \left[\left(V^{\pi}(m{s}) - \widehat{V}^{\pi}(m{s};m{ heta})
ight)
abla_{m{ heta}} \widehat{V}^{\pi}(m{s};m{ heta})
ight] \end{aligned}$$

Stochastic gradient descent with update rule

$$\Delta \boldsymbol{\theta} = \alpha \left(V^{\pi}(\boldsymbol{s}) - \widehat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \widehat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{\theta})$$

Value Function Approximation

Value Function Approximation

- Target value function $V^{\pi}(s)$ unknown
- $V^{\pi}(s)$ is approximated with current reward
- TD(0): $V^{\pi}(s^{(t)}) \approx R(s^{(t)}, a^{(t)}) + \gamma \widehat{V}^{\pi}(s^{(t+1)}; \theta)$

$$\Delta \boldsymbol{\theta} = \alpha \left(\underbrace{R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \widehat{V}^{\pi}(\boldsymbol{s}^{(t+1)}; \boldsymbol{\theta}) - \widehat{V}^{\pi}(\boldsymbol{s}^{(t)}; \boldsymbol{\theta})}_{\text{TD-Error}\Delta \widehat{V}^{\pi}(\boldsymbol{s})} \right) \nabla_{\boldsymbol{\theta}} \widehat{V}^{\pi}(\boldsymbol{s}^{(t)}; \boldsymbol{\theta})$$

• *n*-step TD: $V^{\pi}(s^{(t)}) \approx G_n^{(t)}$ $\Delta \theta = \alpha \left(G_n^{(t)} - \widehat{V}^{\pi}(s^{(t+n)}; \theta) \right) \nabla_{\theta} \widehat{V}^{\pi}(s; \theta)$

Ludwig Winkler

August 27, 2017 26 / 34

Action-Value Function Approximation

- Target value function $Q^{\pi}(s, a)$ unknown
- $Q^{\pi}(s, a)$ is approximated with current reward • $\mathsf{TD}(0)$: $Q^{\pi}(s^{(t)}, a^{(t)}) \approx R(s^{(t)}, a^{(t)}) + \gamma \widehat{Q}^{\pi}(s^{(t+1)}, a^{(t+1)}; \theta)$

$$\Delta \boldsymbol{\theta} = \alpha \underbrace{\left(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)}; \boldsymbol{\theta}) - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}; \boldsymbol{\theta})\right)}_{\text{TD-Error } \Delta \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})} \nabla_{\boldsymbol{\theta}} \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}; \boldsymbol{\theta})$$

• *n*-step TD: $Q^{\pi}(s^{(t)}, a^{(t)}) \approx G_n^{(t)}$

$$\Delta \boldsymbol{\theta} = \alpha \left(G_n^{(t)} - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+n)}, \boldsymbol{a}^{(t+n)}; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \widehat{Q}^{\pi}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{\theta})$$

(人間) とうき くうとう う

Policy Gradient Methods

- Previously deterministic value function approximation with implied policy
- Approximation of policy

$$\pi_{oldsymbol{ heta}}(s, a) = \mathbb{P}\left[a|s; oldsymbol{ heta}
ight]$$

- Does not learn a value function, but directly a policy
- More effective in high-dimensional or continuous spaces
- Better convergence
- Can learn stochastic policies

4 3 5 4 3

Policy Gradient Methods

- Policy quality measured with objective function $J^{\pi_{\theta}}(s^{(0)})$
- Return measured by expectancy of reward over policy

$$J^{\pi_{\theta}}(s^{(0)}) = \mathbb{E}_{\pi_{\theta}}\left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)})\right]$$
$$= \underbrace{\sum_{a^{(0:T)}} \pi_{\theta}(a^{(0:T)}|s^{(0:T)})}_{\text{controlled by policy}}\left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)})\right]$$

∑_{a^(0:T)} are all possible actions a^(t) at time step t with t ∈ {0,..., T}
Episodic sampling of trajectories

Policy Gradient Methods

Policy gradient

$$\nabla_{\theta} J^{\pi_{\theta}}(s^{(0)}) = \sum_{a^{(0:T)}} \underbrace{\nabla_{\theta} \pi_{\theta}(a^{(0:T)} | s^{(0:T)})}_{(\log f(x))' = \frac{f(x)'}{f(x)}} \left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)}) \right]$$
$$= \sum_{a^{(0:T)}} \pi_{\theta}(a^{(0:T)} | s^{(0:T)}) \left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)}) \right] \nabla_{\theta} \log \left[\pi_{\theta}(a^{(0:T)} | s^{(0:T)}) \right]$$
$$= \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)}) \nabla_{\theta} \log \left[\pi_{\theta}(a^{(0:T)} | s^{(0:T)}) \right] \right]$$

 $\,\circ\,$ Sampling of trajectories with corresponding rewards necessary

• Trajectory sampling inefficient and high-variance

- 4 同 6 4 日 6 4 日 6

Actor-Critic Methods

Actor-Critic Methods

• Compatible Function Approximation Theorem: Replace trajectory reward with long-term value $Q^{\pi_{\theta}}(s^{(t)}, a^{(t)})$

$$\nabla_{\boldsymbol{\theta}} J^{\pi}(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \ \nabla_{\boldsymbol{\theta}} \log \left[\pi_{\boldsymbol{\theta}}(\boldsymbol{a}^{(0:T)} | \boldsymbol{s}^{(0:T)}) \right] \right]$$
$$\approx \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[Q^{\pi_{\boldsymbol{\theta}}}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \nabla_{\boldsymbol{\theta}} \log \left[\pi_{\boldsymbol{\theta}}(\boldsymbol{a}^{(t)} | \boldsymbol{s}^{(t)}) \right] \right]$$

- Actor π_{θ} performs and critic $Q^{\pi_{\theta}}(s, a)$ evaluates
- Critic determines value function and policy update
- Critic reduces variance

Actor-Critic Methods

$$\delta^{(t)} = R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)}) - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)})$$

An Introduction to Reinforcement Learning

August 27, 2017 32 / 34

End-to-End Reinforcement Learning

Human-level control through deep reinforcement learning

Neural network architecture and training

- Input(84 × 84 × 4) \rightarrow CL(8 × 8 × 32) \rightarrow CL(4 × 4 × 64) \rightarrow CL(3 × 3 × 64) \rightarrow FC(512) \rightarrow Output(4-18)
- ReLu activation function and RMSProp
- Experience Replay
 - Store transitions $(s^{(t)}, a^{(t)}, R(s^{(t)}, a^{(t)}), s^{(t+1)})$ in \mathcal{D}
 - $\circ~$ Sample from ${\cal D}$ for mini-batches
- Fixed Q-Targets
 - Target Q-Values in TD-Error change every 10.000 iterations

$$\Delta \boldsymbol{\theta} = \mathbb{E}_{\mathcal{D}} \left[\left(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \gamma \max_{\boldsymbol{a}^{(t+1)}} \widehat{Q}^{\pi}(\boldsymbol{s}^{(t+1)}, \boldsymbol{a}^{(t+1)}; \boldsymbol{\theta}^{-}) - \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}; \boldsymbol{\theta}) \right) \nabla_{\boldsymbol{\theta}} \widehat{Q}^{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}; \boldsymbol{\theta}) \right]_{\text{Fixed}}$$

イロト イポト イヨト イヨト 二日

Sources

- [1] Machine Intelligence I (TU Berlin WS16/17) Klaus Obermayer & Wendelin Böhmer
- [2] Reinforcement Learning (UCL SS16) David Silver
- [3] Deep Learning at Oxford (Oxford SS15) Nando de Freitas

(日) (周) (三) (三)