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Intuition

o In between supervised and unsupervised learning
o Take actions in an environment that maximize reward

o Actions — Policy
o Environment — States
o Reward — Feedback from environment

Ludwig Winkler

A

Observation reward

Environment

An Introduction to Reinforcement Learning

Action

August 27, 2017

3/34



Notation

Action acA
State ses
Policy m(als)
Transition model T(sjlsi, ak)
Reward function R(si, ak)
Value function V(si)
Action-Value function | Q(s;, ax)
Discount factor v €10,1)
Learning rate neRT
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Markov Decision Processes

o]

Markov Property: Future is independent of the past given the present
Policy: 7(akls;i)
o Probability of taking action ag in state s;

(@]

o

Transition model: T'(s;|s;, ax)
o Probability of going to next state s; given action ay in state s;

@]

Reward model: R(s;, ak)
o Reward for taking action aj in state s;

o

Discount factor ~y
o Difference of importance between future and present rewards

MDP: 5-Tuple (S, A, T'(sj|si, ak), R(si, ak), )

o
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Value function

o Estimation of future rewards following policy 7 from state s(©)
o Geometric weighting of future rewards
o Expected infinite sum of discounted future rewards:
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I ' forction
Value Function - Grid World Example

maze 1
maze 3
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Bellman Equation

o Knowledge of environment to construct 7'(s;|s;, ax) and R(s;, ax)

o V7(s;) is the future, discounted reward expected in state s; = s(0):

o0 (t) ~ (.
S ytR(s®, ) ° e ]
t=0

vT S;) = E
(si) s~ T( s, a)
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Bellman Equation

o Knowledge of environment to construct 7'(s;|s;, ax) and R(s;, ax)
o V7(s;) is the future, discounted reward expected in state s; = s(0):

0 )
tp((t) 5(b) Ty v ]
Y R(s',a\")
tz:; S(t+1) T(-|s, a)
—E [R(s(o), a<°))‘a(°) ~ w(-ys)}
> A'R(s",a)

t=1

Vﬂ(s,') =E

a9 ~ m(:[s)

+~E
! S L 75, a>]

Ludwig Winkler An Introduction to Reinforcement Learning August 27, 2017 8 /34



I © 2" Ea2tion

Bellman Equation

o Knowledge of environment to construct 7'(s;|s;, ax) and R(s;, ax)
o V7(s;) is the future, discounted reward expected in state s; = s(0):

0 )
tp((t) 5(b) Ty v ]
Y R(s',a\")
tz:; S(t+1) T(-|s, a)
—E [R(s(o), a<°))‘a(°) ~ w(-ys)}
> A'R(s",a)

t=1

Vﬂ(s,') =E

+E
s T(-s, a)

=E, [R(s(o), a(o))} +7E, [V”(s(l))‘s(l) ~ T(-]s, a)]

é”~ﬂ¢)]
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I © 2" Ea2tion

Bellman Equation

o Knowledge of environment to construct 7'(s;|s;, ax) and R(s;, ax)
o V7(s;) is the future, discounted reward expected in state s; = s(0):

> O ~ a(fs)
a TS
=EK ER(s(®), a(®)
Z;V( st~ T( s, 2)
—E [R(s(o), a<°))‘a(°) ~ w(-ys)}

Z vER(s(), a()

t=1

+E
s T(-s, a)

=E, [R(s(o), a(o))} +7E, [V”(s(l))‘s(l) ~ T(-]s, a)]

A S
Zﬂ' 3k|5/ ( Slaak) +’VZT(SJ'SI'73/<)V7F(SJ'))
k=1

é”~ﬂ¢)]

Jj=1
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Bellman Equation

S

A
Zﬂ— ak‘sl Slaak)+72T(5j‘sivak)vﬂ(5j)
k=1

j=1

A S A
ZTF ak|si)R(si, ax) +VZZ7T ak|si)T (sjlsi, ax) V™
k=1

j=1 k=1

/

policy controlled reward R™ policy controlled transition T'™

o Can be solved analytically:

VIi=R 47T VT & V' =(—~yT") ' R"

o Or via value iteration:
VT R™ 4+~ T7V"
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Model-based Reinforcement Learning

o Bellman operator E’T[V”] is a contraction mapping
B\ﬂ'[vﬂ'] — R™ + ~ Ty

o Optimal policy 7* can be derived from V™ (s)
o Take action that such that next state has highest value
o Requires explicit transition and reward function for all states

o Heat dissipation formulas for engine control
o Avionic formulas for helicopter control
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~ ModekFree Reinforcement Learning
Model-Free Methods

o What if transition and reward functions are unknown?
o Agent has to learn by interacting with the environment

o Instead of being provided with model, agent builds its own model
A

Observation reward Action
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N "< po! Difference Leaming
Temporal Difference Learning - TD(0)

o lterative difference between state values

Boot-strapped Backup
VT(s®) = VT (sO) 4 n[ R(s®), a®) 4 AV (s(HD) —V7(s(D) ]

TD-Error AV7(s)

o vV (s(tT1)) serves as an estimate for remaining future rewards
’yR(s(t+2), a(t+2)) + VZR(S(Hg‘), a(t+3)) 4.
o Influence of learning rate 7:

o Large n: fast learning, large variance
o Small n: slow learning, small variance
o Decaying learning rate not practical due to non-stationarity
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Temporal Difference Learning - Value Propagation

o Example:
o 10 states, 1 action (forward)
o Reward in last state
o~vy=0.9
on=1,n=0.>5

o Value Propagation requires:
o 10 rounds for n =1
o 26 rounds for 7 = 0.5

o Source:[1]

1.0 AN1OAN10AN10 A N1OAN10 ANLOAN10 ~\10
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n-step Temporal Difference Learning

o TD(0) uses only immediate next reward

o Temporal difference can be extended over n-steps

n—1
G'Szt) _ Z’YTR(S(H_T), a(t—i—T)) + ,yn‘/}W(s(t—l-n))
7=0

e.g. th) = R(stHD) 5(t+1)) +,ﬂ7ﬂ(5(t+1))
Ggl‘) — R(s(t+1)7 a(t+1)) + ryR(S(t+2)’ a(t+2)) n 72‘77r(5(t+2))

o 4"V (s(t+1)) as estimate for future rewards at time steps t > n
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Ny '-t<p Methods
n-step Temporal Difference Learning & TD(\)

t)

Value function is updated with n-step return G%

o]

n-step Backup
VT (s®) e VT (s®O) 4+ [ GO 4 4V (stHm)) V7 (s(9) ]

TD-Error AV7(s)

o

Use weighted mean with decaying weights
Z R (t-‘rT (t+7’)) € [0’ 1)

Smaller \ favor more immediate rewards

o

(0]

Practically rewards are considered until A™ =~ 0
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N -stcp Methods
TD(\) & Eligibility Traces

o Cumbersome forward calculation of Gg) for each step t

o Backward view TD(\) with eligibility traces more efficient
V7(s) = V7 + 1 e(s) (R(s9, 20) 4777 (s(10) = 77(s1) )

e0)(s) — yelt=1)(s) if s # s(t)
et (s) +1 if s = s(®)

o 'Measures how eligible a state is for the accumulated reward’

| | | | | | | times of state visits

accumulating trace
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N -stcp Methods
TD()\) - Value Propagation

o Example:
o 10 states, 1 action (forward)
o Reward in last state
oy=1n=1

o Value Propagation requires:
o 1round for A =1 i

4 rounds for A = 0.9 | pp——— )|
7 rounds for 3
10 rounds for A =0 E

o Source: [1]

o O O
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Q-Value function

o V7™(s;) only provides state values
o No information about value of possible actions ax

o Q™ (si, ak) provides value for action a in state s;

S(O) =S5, a(o) = dk

Q" (si» ak) = ZWtR(S(t a9)|a ) < r(fs)
s T s, a)

o More expressive but also more data needed
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SARSA

o TD(0) learning for Q-values with TD-Errors

Boot-strapped Back-up

Q7 (s",a") « Q7 (s, a) + n( R(s™,aM) + 4@ (s"Y, a V) —Q7 (s, a1V )

TD-Error AQ™ (s(t) a(t))

o SARSA(X) with multi-step methods
o On-Policy learning

o Behavior and evaluation policy are the same
o Behavior policy: Taking steps according to Q™
o Evaluation policy: Evaluate discounted temporal difference
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SNSRI O~ & Off-Policy Methods
Q-Learning

o Off-Policy learning

o Behavior and evaluation policy are different

o Behavior policy: Taking steps according to some policy 7
o Evaluation policy: Evaluate against maximum Q-Value

o Greedy evaluation but 'curious’ behaviour

o Q-Learning finds optimal policy 7* independent of behavioral policy

Boot-strapped Back-up

Q7 (s,a%) ¢ Q7(s,a) 4 n(R(s1%, 2) + 7 max Q(s+, a) ~Q7 (s, 2%) )
a

TD-Error AQ7 (s(1),a(t))

o Q(A) with multi-step methods
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Exploration-Exploitation Dilemma

o]

Exploiting known policy vs exploring better policies

(0]

Yet unknown policy might yield even higher rewards

(0]

Sampling strategy should balance both

(0]

Find expected rewards of policy with high values

o

Find potential reward of policy of alternative actions
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N 7 o Eplcitation

Exploration-Exploitation Dilemma - e-greedy and softmax

o]

e-greedy policy: Exploration controlled with parameter € € [0, 1]

maxy Q7(s,a’) with probability 1 — ¢
a—=
Random a with probability €

(o]

The larger € the more random actions are taken

Softmax policy: Exploration controlled with parameter 3 € RT

(0]

exp(3 @”A(s, a))
S exp(8 Q7 (s, &)

The smaller S the more random actions are taken

m(als) =

(0]

o

Decreasing exploration over time for agent
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Exploration-Exploitation Dilemma - Optimistic Initialization

o]

Initialize all Q-Values with high values
Unexplored actions are all very attractive
TD-Error AV™(s) can be negative

(0]

(0]

AQ7(s,3) = R(s, 40) +1Q7(s14D, 5(H1) — G5, al0)

O

Initially slower, but faster convergence to limit
Works with SARSA(A) and Q(\)-Learning

(o]
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Approximate Reinforcement Learning

o Previous methods worked all tabular

(@]

Not recommendable for large or continuous state-action spaces

o Board game Go on 19 x 19 board: 319%19 ~ 10172
o Autonomous helicopter control is continuous

@]

Generalization is required for more complex problems

o

Wide catalogue of function approximations available, but

o Non-stationarity
o Delayed targets
o Boot-strapping
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Value Function Approximation

Parameterization of value function with 8: V7(s; 6)
Minimize MSE between approximation V7(s; 8) and true V™ (s)

o

o

J(6) = E, [(V”(s) _P(s: a))z]

Gradient descent finds the local minimum

o

VoJ(0) = Vo, [(V”(s) V(s 0))1

— 2, [(V”(s) V(s 9)) VoV (s; 9)}

o

Stochastic gradient descent with update rule
A =a (V’r(s) — V(s 9)) VoV (s;0)
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Value Function Approximation

o]

Target value function V™ (s) unknown

(0]

V7(s) is approximated with current reward
TD(0): V™(st)) =~ R(s(®), aM)) 4 ,ﬂ’}w(s(t-s-l); 9)

(0]

A6 = a<R(s(f>, 2Dy 4 AV (s, gy — V7 (s(0); 0)>v9?7f(s<f); 0)

-~

TD-ErrorAV 7 (s)

(@]

n-step TD: V7 (s(t)) ~ G

AO = a (Gg) — P (s, 9)) VoV (s; 0)
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Action-Value Function Approximation

o Target value function Q™ (s, a) unknown
o Q7(s,a)is approximated with current reward
o TD(0): Q(s®),a()) ~ R(s(®, aV) 4+ 7Qm(s(*+1), at+1); )

AB = o (R(S(t)’a(t)) +7@w( (1) 5(t+1). g 9) — Qn( (t);0)> vg@n(s(t)

TD-Error AQ™ (s(1),a(0)
o n-step TD: Q7(s(1), a(t)) ~ el

NG = « (Gg) — @”(S(H”), g(t+n). 0)) Vg@”(s, a; 0)
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S REN 7'ies Graclents
Policy Gradient Methods

o Previously determinstic value function approximation with implied
policy
o Approximation of policy

mo(s,a) = P[als; 0]
o Does not learn a value function, but directly a policy
o More effective in high-dimensional or continuous spaces

o Better convergence

o Can learn stochastic policies
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S REN 7'ies Graclents
Policy Gradient Methods

o Policy quality measured with objective function .J™(s(0)

o Return measured by expectancy of reward over policy

T
Jﬂe(s(o)) - Z s(8) 5 ]
t=0
T
== 7p(a@ |5 7)) S R(s (0, 5(0)) ]
a(0:T) t=0
controlled by policy

o Y .o are all possible actions a(!) at time step t with t € {0,..., T}

o Episodic sampling of trajectories
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S REN 7'ies Graclents
Policy Gradient Methods

o Policy gradient

veJﬂ'g (S(O)) _ Z vaﬂ_e(a(O:T)ls(O:T))
—_—

4(0:T)

-
Z R(s(t), a(f))]
t=0

(log £(x))/ = L

_ ﬂ_g(a(O:T) |S(O:T)) Ve log |:7I'g(a(0:T) |S(O:T))]
)

20T

-
Z R(s(t), a(f))
t=0

:Eﬂ’g

-
Z R(s",a") Vg log [We(a(o:T)|$(0:T))]:|
t=0

o Sampling of trajectories with corresponding rewards necessary

o Trajectory sampling inefficient and high-variance
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OIS o'-Critic Mechods
Actor-Critic Methods

o]

Compatible Function Approximation Theorem:
Replace trajectory reward with long-term value Q”"(s(t), a(t))

VeJ™(0) =E,,

;
> R(s,al) Vglog [We(a(O:T) |5(0:T))]]

t=0
~ Er, [Qﬂe(s(t)7 aM\Vg log [ﬂ'g(a(t)|s(t))] ]

(@]

Actor mg performs and critic Q™ (s, a) evaluates

@]

Critic determines value function and policy update

Critic reduces variance

@]

Ludwig Winkler An Introduction to Reinforcement Learning August 27, 2017 31/ 34



OIS o'-Critic Mechods
Actor-Critic Methods

50 = R(s(®), a0y 4 4Q7 (s 51y — Q7 (s(1),

Observation Actor

TD Error 6(0)

Observat|on
State —_— Value Function ‘ Action

Cntlc 77777777777777
Reward
Envwonment
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End-to-End Reinforcement Learning

Human-level control through deep reinforcement learning

o Neural network architecture and training
o Input(84 x 84 x 4) — CL(8 x 8 x 32) — CL(4 x 4 x 64) —
CL(3 x 3 x 64) — FC(512) — Output(4-18)
o Relu activation function and RMSProp
o Experience Replay
o Store transitions (s(*), a(t), R(s(1) a(1)), s(t+1)) in D
o Sample from D for mini-batches
o Fixed Q-Targets
o Target Q-Values in TD-Error change every 10.000 iterations

80 = | (R(s,89) 4 max Q7(s(),alt*2;07) @7 (19,9:60) ) Vo Q" (1%, % 0)
alt

Fixed
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Sources
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Klaus Obermayer & Wendelin Bohmer

o [2] Reinforcement Learning (UCL - SS16)
David Silver

o [3] Deep Learning at Oxford (Oxford - SS15)
Nando de Freitas
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