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Intuition

Intuition

◦ In between supervised and unsupervised learning

◦ Take actions in an environment that maximize reward
◦ Actions 7→ Policy
◦ Environment 7→ States
◦ Reward 7→ Feedback from environment

Environment

Agent

ActionObservation reward
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Notation

Notation

Action a ∈ A
State s ∈ S
Policy π(a|s)
Transition model T (sj |si , ak)
Reward function R(si , ak)
Value function V (si )
Action-Value function Q(si , ak)
Discount factor γ ∈ [0, 1)
Learning rate η ∈ R+
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Notation

Markov Decision Processes

◦ Markov Property: Future is independent of the past given the present

◦ Policy: π(ak |si )
◦ Probability of taking action ak in state si

◦ Transition model: T (sj |si , ak)

◦ Probability of going to next state sj given action ak in state si

◦ Reward model: R(si , ak)

◦ Reward for taking action ak in state si

◦ Discount factor γ

◦ Difference of importance between future and present rewards

◦ MDP: 5-Tuple (S,A, T (sj |si , ak), R(si , ak), γ)
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Model-Based Reinforcement Learning Value function

Value function

◦ Estimation of future rewards following policy π from state s(0)

◦ Geometric weighting of future rewards
◦ Expected infinite sum of discounted future rewards:

V π(s(0)) = E

[ ∞∑
t=0

γtR(s(t), a(t))

∣∣∣∣∣ a(t) ∼ π(·|s)

s(t+1) ∼ T (·|s, a)

]
, γ ∈ [0, 1)
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Model-Based Reinforcement Learning Value function

Value Function - Grid World Example
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Model-Based Reinforcement Learning Bellman Equation

Bellman Equation

◦ Knowledge of environment to construct T (sj |si , ak) and R(si , ak)

◦ V π(si ) is the future, discounted reward expected in state si = s(0):

V π(si ) = E

[ ∞∑
t=0

γtR(s(t), a(t))

∣∣∣∣∣ a(t) ∼ π(·|s)

s(t+1) ∼ T (·|s, a)

]

= E
[
R(s(0), a(0))

∣∣∣a(0) ∼ π(·|s)
]

+ γE

[ ∞∑
t=1

γtR(s(t), a(t))

∣∣∣∣∣ a(t) ∼ π(·|s)

s(t+1) ∼ T (·|s, a)

]
= Eπ

[
R(s(0), a(0))

]
+ γEπ

[
V π(s(1))

∣∣∣s(1) ∼ T (·|s, a)
]

=
A∑

k=1

π(ak |si )

R(si , ak) + γ

S∑
j=1

T (sj |si , ak)V π(sj)


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Model-Based Reinforcement Learning Bellman Equation

Bellman Equation

V π(si ) =
A∑

k=1

π(ak |si )

R(si , ak) + γ

S∑
j=1

T (sj |si , ak)V π(sj)


=

A∑
k=1

π(ak |si )R(si , ak)︸ ︷︷ ︸
policy controlled reward Rπ

+γ
S∑

j=1

A∑
k=1

π(ak |si )T (sj |si , ak)︸ ︷︷ ︸
policy controlled transition Tπ

V π

◦ Can be solved analytically:

V π = Rπ + γ T π V π ⇔ V π = (I − γT π)−1 Rπ

◦ Or via value iteration:

V π ← Rπ + γ T πV π
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Model-Based Reinforcement Learning Bellman Equation

Model-based Reinforcement Learning

◦ Bellman operator B̂π[V π] is a contraction mapping

B̂π[V π] = Rπ + γ T πV π

◦ Optimal policy π∗ can be derived from V π∗(s)

◦ Take action that such that next state has highest value

◦ Requires explicit transition and reward function for all states

◦ Heat dissipation formulas for engine control
◦ Avionic formulas for helicopter control
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Model-Free Reinforcement Learning

Model-Free Methods

◦ What if transition and reward functions are unknown?

◦ Agent has to learn by interacting with the environment

◦ Instead of being provided with model, agent builds its own model

? Environment ?

Agent

ActionObservation reward
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Model-Free Reinforcement Learning Temporal Difference Learning

Temporal Difference Learning - TD(0)

◦ Iterative difference between state values

V̂ π(s(t))← V̂ π(s(t)) + η
[ Boot-strapped Backup︷ ︸︸ ︷
R(s(t), a(t)) + γV̂ π(s(t+1))−V̂ π(s(t))︸ ︷︷ ︸

TD-Error ∆V̂ π(s)

]

◦ γV̂ π(s(t+1)) serves as an estimate for remaining future rewards
γR(s(t+2), a(t+2)) + γ2R(s(t+3), a(t+3)) + . . .

◦ Influence of learning rate η:

◦ Large η: fast learning, large variance
◦ Small η: slow learning, small variance
◦ Decaying learning rate not practical due to non-stationarity
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Model-Free Reinforcement Learning Temporal Difference Learning

Temporal Difference Learning - Value Propagation

◦ Example:

◦ 10 states, 1 action (forward)
◦ Reward in last state
◦ γ = 0.9
◦ η = 1, η = 0.5

◦ Value Propagation requires:

◦ 10 rounds for η = 1
◦ 26 rounds for η = 0.5

◦ Source:[1]
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Model-Free Reinforcement Learning Multi-step Methods

n-step Temporal Difference Learning

◦ TD(0) uses only immediate next reward

◦ Temporal difference can be extended over n-steps

G(t)
n =

n−1∑
τ=0

γτR(s(t+τ), a(t+τ)) + γnV̂ π(s(t+n))

e.g. G
(t)
1 = R(s(t+1), a(t+1)) + γV̂ π(s(t+1))

G
(t)
2 = R(s(t+1), a(t+1)) + γR(s(t+2), a(t+2)) + γ2V̂ π(s(t+2))

. . .

◦ γnV̂ π(s(t+n)) as estimate for future rewards at time steps t > n
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Model-Free Reinforcement Learning Multi-step Methods

n-step Temporal Difference Learning & TD(λ)

◦ Value function is updated with n-step return G
(t)
n

V̂ π(s(t))← V̂ π(s(t)) + η
[ n-step Backup︷ ︸︸ ︷
G(t)
n + γnV̂ π(s(t+n))−V̂ π(s(t))︸ ︷︷ ︸

TD-Error ∆V̂ π(s)

]

◦ Use weighted mean with decaying weights

G
(t)
λ = (1− λ)

∞∑
τ=0

λτR(s(t+τ), a(t+τ)) , λ ∈ [0, 1)

◦ Smaller λ favor more immediate rewards

◦ Practically rewards are considered until λτ ≈ 0
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Model-Free Reinforcement Learning Multi-step Methods

TD(λ) & Eligibility Traces

◦ Cumbersome forward calculation of G
(t)
n for each step t

◦ Backward view TD(λ) with eligibility traces more efficient

V̂ π(s) = V̂ π + η e(t)(s)
(
R(s(t), a(t)) + γV̂ π(s(t+1))− V̂ π(s(t))

)
e(t)(s) =

{
γλe(t−1)(s) if s 6= s(t)

γλe(t−1)(s) + 1 if s = s(t)

◦ ’Measures how eligible a state is for the accumulated reward’
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Model-Free Reinforcement Learning Multi-step Methods

TD(λ) - Value Propagation

◦ Example:

◦ 10 states, 1 action (forward)
◦ Reward in last state
◦ γ = 1, η = 1

◦ Value Propagation requires:

◦ 1 round for λ = 1
◦ 4 rounds for λ = 0.9
◦ 7 rounds for λ = 0.5
◦ 10 rounds for λ = 0

◦ Source: [1]
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Model-Free Reinforcement Learning Q-Value Function

Q-Value function

◦ V π(si ) only provides state values

◦ No information about value of possible actions ak

◦ Qπ(si , ak) provides value for action ak in state si

Qπ(si , ak) = E

 ∞∑
t=0

γtR(s(t), a(t))

∣∣∣∣∣∣∣∣
s(0) = si ; a

(0) = ak

a(t+1) ∼ π(·|s)

s(t+1) ∼ T (·|s, a)


◦ More expressive but also more data needed
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Model-Free Reinforcement Learning On- & Off-Policy Methods

SARSA

◦ TD(0) learning for Q-values with TD-Errors

Q̂π(s(t), a(t))← Q̂π(s(t), a(t)) + η
( Boot-strapped Back-up︷ ︸︸ ︷
R(s(t), a(t)) + γQ̂π(s(t+1), a(t+1))−Q̂π(s(t), a(t))︸ ︷︷ ︸

TD-Error ∆Q̂π(s(t),a(t))

)

◦ SARSA(λ) with multi-step methods

◦ On-Policy learning

◦ Behavior and evaluation policy are the same
◦ Behavior policy: Taking steps according to Q̂π

◦ Evaluation policy: Evaluate discounted temporal difference
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Model-Free Reinforcement Learning On- & Off-Policy Methods

Q-Learning

◦ Off-Policy learning

◦ Behavior and evaluation policy are different
◦ Behavior policy: Taking steps according to some policy π
◦ Evaluation policy: Evaluate against maximum Q-Value
◦ Greedy evaluation but ’curious’ behaviour

◦ Q-Learning finds optimal policy π∗ independent of behavioral policy

Q̂π(s(t), a(t))← Q̂π(s(t), a(t)) + η
( Boot-strapped Back-up︷ ︸︸ ︷
R(s(t), a(t)) + γ max

a(t+1)
Q̂π(s(t+1), a(t+1))−Q̂π(s(t), a(t))︸ ︷︷ ︸

TD-Error ∆Q̂π(s(t),a(t))

)

◦ Q(λ) with multi-step methods
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Model-Free Reinforcement Learning Exploration-Exploitation

Exploration-Exploitation Dilemma

◦ Exploiting known policy vs exploring better policies

◦ Yet unknown policy might yield even higher rewards

◦ Sampling strategy should balance both

◦ Find expected rewards of policy with high values

◦ Find potential reward of policy of alternative actions
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Model-Free Reinforcement Learning Exploration-Exploitation

Exploration-Exploitation Dilemma - ε-greedy and softmax

◦ ε-greedy policy: Exploration controlled with parameter ε ∈ [0, 1]

a =

{
maxa′ Q̂

π(s, a′) with probability 1− ε
Random a with probability ε

◦ The larger ε the more random actions are taken

◦ Softmax policy: Exploration controlled with parameter β ∈ R+

π(a|s) =
exp(β Q̂π(s, a))∑A
a′ exp(β Q̂π(s, a′))

◦ The smaller β the more random actions are taken

◦ Decreasing exploration over time for agent
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Model-Free Reinforcement Learning Exploration-Exploitation

Exploration-Exploitation Dilemma - Optimistic Initialization

◦ Initialize all Q-Values with high values

◦ Unexplored actions are all very attractive

◦ TD-Error ∆V̂ π(s) can be negative

∆Q̂π(s, a) = R(s(t), a(t)) + γQ̂π(s(t+1), a(t+1))− Q̂π(s(t), a(t))

◦ Initially slower, but faster convergence to limit

◦ Works with SARSA(λ) and Q(λ)-Learning
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Approximate Reinforcement Learning

Approximate Reinforcement Learning

◦ Previous methods worked all tabular

◦ Not recommendable for large or continuous state-action spaces

◦ Board game Go on 19 × 19 board: 319×19 ≈ 10172

◦ Autonomous helicopter control is continuous

◦ Generalization is required for more complex problems

◦ Wide catalogue of function approximations available, but

◦ Non-stationarity
◦ Delayed targets
◦ Boot-strapping
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Approximate Reinforcement Learning Value Function Approximation

Value Function Approximation

◦ Parameterization of value function with θ: V̂ π(s;θ)

◦ Minimize MSE between approximation V̂ π(s;θ) and true V π(s)

J(θ) = Eπ
[(
V π(s)− V̂ π(s;θ)

)2
]

◦ Gradient descent finds the local minimum

∇θJ(θ) = ∇θEπ
[(
V π(s)− V̂ π(s;θ)

)2
]

= 2 Eπ
[(
V π(s)− V̂ π(s;θ)

)
∇θV̂

π(s;θ)
]

◦ Stochastic gradient descent with update rule

∆θ = α
(
V π(s)− V̂ π(s;θ)

)
∇θV̂

π(s;θ)
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Approximate Reinforcement Learning Value Function Approximation

Value Function Approximation

◦ Target value function V π(s) unknown

◦ V π(s) is approximated with current reward

◦ TD(0): V π(s(t)) ≈ R(s(t), a(t)) + γV̂ π(s(t+1);θ)

∆θ = α

(
R(s(t), a(t)) + γV̂ π(s(t+1);θ)− V̂ π(s(t);θ)︸ ︷︷ ︸

TD-Error∆V̂ π(s)

)
∇θV̂

π(s(t);θ)

◦ n-step TD: V π(s(t)) ≈ G(t)
n

∆θ = α
(
G(t)
n − V̂ π(s(t+n);θ)

)
∇θV̂

π(s;θ)
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Approximate Reinforcement Learning Value Function Approximation

Action-Value Function Approximation

◦ Target value function Qπ(s, a) unknown

◦ Qπ(s, a) is approximated with current reward

◦ TD(0): Qπ(s(t), a(t)) ≈ R(s(t), a(t)) + γQ̂π(s(t+1), a(t+1);θ)

∆θ = α
(
R(s(t), a(t)) + γQ̂π(s(t+1), a(t+1);θ)− Q̂π(s(t), a(t);θ)

)
︸ ︷︷ ︸

TD-Error ∆Q̂π(s(t),a(t))

∇θQ̂
π(s(t), a(t);θ)

◦ n-step TD: Qπ(s(t), a(t)) ≈ G(t)
n

∆θ = α
(
G(t)
n − Q̂π(s(t+n), a(t+n);θ)

)
∇θQ̂

π(s, a;θ)
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Approximate Reinforcement Learning Policy Gradients

Policy Gradient Methods

◦ Previously determinstic value function approximation with implied
policy

◦ Approximation of policy

πθ(s, a) = P [a|s;θ]

◦ Does not learn a value function, but directly a policy

◦ More effective in high-dimensional or continuous spaces

◦ Better convergence

◦ Can learn stochastic policies
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Approximate Reinforcement Learning Policy Gradients

Policy Gradient Methods

◦ Policy quality measured with objective function Jπθ(s(0))

◦ Return measured by expectancy of reward over policy

Jπθ(s(0)) = Eπθ

[
T∑
t=0

R(s(t), a(t))

]

=
∑
a(0:T )

πθ(a(0:T )|s(0:T ))︸ ︷︷ ︸
controlled by policy

[
T∑
t=0

R(s(t), a(t))

]

◦
∑

a(0:T ) are all possible actions a(t) at time step t with t ∈ {0, . . . ,T}
◦ Episodic sampling of trajectories
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Approximate Reinforcement Learning Policy Gradients

Policy Gradient Methods

◦ Policy gradient

∇θJ
πθ (s(0)) =

∑
a(0:T )

∇θπθ(a(0:T )|s(0:T ))︸ ︷︷ ︸
(log f (x))′=

f (x)′
f (x)

[
T∑
t=0

R(s(t), a(t))

]

=
∑
a(0:T )

πθ(a(0:T )|s(0:T ))

[
T∑
t=0

R(s(t), a(t))

]
∇θ log

[
πθ(a(0:T )|s(0:T ))

]

= Eπθ

[
T∑
t=0

R(s(t), a(t)) ∇θ log
[
πθ(a(0:T )|s(0:T ))

]]

◦ Sampling of trajectories with corresponding rewards necessary

◦ Trajectory sampling inefficient and high-variance
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Approximate Reinforcement Learning Actor-Critic Methods

Actor-Critic Methods

◦ Compatible Function Approximation Theorem:
Replace trajectory reward with long-term value Qπθ(s(t), a(t))

∇θJ
π(θ) = Eπθ

[
T∑
t=0

R(s(t), a(t)) ∇θ log
[
πθ(a(0:T )|s(0:T ))

]]
≈ Eπθ

[
Qπθ(s(t), a(t))∇θ log

[
πθ(a(t)|s(t))

] ]
◦ Actor πθ performs and critic Qπθ(s, a) evaluates

◦ Critic determines value function and policy update

◦ Critic reduces variance
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Approximate Reinforcement Learning Actor-Critic Methods

Actor-Critic Methods

δ(t) = R(s(t), a(t)) + γQ̂π(s(t+1), a(t+1))− Q̂π(s(t), a(t))

Value Function

Environment

Policy

State

TD-Error δ(t)

Observation

Action

Reward

Observation

Critic

Actor
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Approximate Reinforcement Learning End-to-End Reinforcement Learning

End-to-End Reinforcement Learning
Human-level control through deep reinforcement learning

◦ Neural network architecture and training

◦ Input(84× 84× 4) → CL(8× 8× 32) → CL(4× 4× 64) →
CL(3× 3× 64) → FC(512) → Output(4-18)

◦ ReLu activation function and RMSProp

◦ Experience Replay

◦ Store transitions (s(t), a(t),R(s(t), a(t)), s(t+1)) in D
◦ Sample from D for mini-batches

◦ Fixed Q-Targets

◦ Target Q-Values in TD-Error change every 10.000 iterations

∆θ = ED
[(
R(s(t), a(t)) + γ max

a(t+1)
Q̂π(s(t+1), a(t+1);θ−)︸ ︷︷ ︸

Fixed

−Q̂π(s(t), a(t);θ)

)
∇θQ̂

π(s(t), a(t);θ)

]
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Approximate Reinforcement Learning Sources

Sources

◦ [1] Machine Intelligence I (TU Berlin - WS16/17)
Klaus Obermayer & Wendelin Böhmer

◦ [2] Reinforcement Learning (UCL - SS16)
David Silver

◦ [3] Deep Learning at Oxford (Oxford - SS15)
Nando de Freitas
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