
GPyTorch

Ludwig Winkler

Machine Learning Group
TU Berlin

May 14, 2019

Ludwig Winkler GPyTorch May 14, 2019 1 / 21

Outline

Gram-Schmidt Orthogonalization

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent

Gaussian Processes

GPyTorch

Going Deep

Ludwig Winkler GPyTorch May 14, 2019 2 / 21

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonolization

◦ Linearly independent vectors v1, v2 span a vector space

◦ Find orthogonal vectors u1, u2 in that vector space

u2 = v2 −

v1

v2

u1

v2

v1
u2

Ludwig Winkler GPyTorch May 14, 2019 3 / 21

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonolization

◦ Linearly independent vectors v1, v2 span a vector space

◦ Find orthogonal vectors u1, u2 in that vector space

u2 = v2 −

v1

v2

u1

v2

v1
u2

Ludwig Winkler GPyTorch May 14, 2019 3 / 21

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonolization

◦ Linearly independent vectors v1, v2 span a vector space

◦ Find orthogonal vectors u1, u2 in that vector space

u2 = v2 −

〈v2;u1〉
〈u1;u1〉

u1

v1

v2

u1

v2

v1
u2

Ludwig Winkler GPyTorch May 14, 2019 3 / 21

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonolization

◦ Linearly independent vectors v1, v2 span a vector space

◦ Find orthogonal vectors u1, u2 in that vector space

u2 =

v2 −
〈v2;u1〉
〈u1;u1〉

u1

v1

v2

u1

v2

v1

u2

Ludwig Winkler GPyTorch May 14, 2019 3 / 21

Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonolization

◦ Linearly independent vectors v1, v2 span a vector space

◦ Find orthogonal vectors u1, u2 in that vector space

u2 = v2 −
〈v2;u1〉
〈u1;u1〉

u1

v1

v2

u1

v2

v1

u2

Ludwig Winkler GPyTorch May 14, 2019 3 / 21

Gram-Schmidt Orthogonalization

2nd-Order Optimization of Quadratic Functions

◦ Quadratic optimization problem

min
x

f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 4 / 21

Gram-Schmidt Orthogonalization

2nd-Order Optimization of Quadratic Functions

◦ Quadratic optimization problem

min
x

f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 4 / 21

Gram-Schmidt Orthogonalization

2nd-Order Optimization of Quadratic Functions

◦ Quadratic optimization problem

min
x

f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 4 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Taylor Expansion

◦ 2nd-Order Taylor Expansion around x0:

f(∆x) = f(x0)

+∇xf(x0)∆x+
1

2
∇2
xf(x0)∆x2

◦ Optimal step size ∆x obtained by derivative ∇∆x:

∇∆xf(∆x) = ∇xf(x0) +∇2
xf(x0)∆x

!
= 0

⇐⇒

∆x = −∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 5 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Taylor Expansion

◦ 2nd-Order Taylor Expansion around x0:

f(∆x) = f(x0) +∇xf(x0)∆x

+
1

2
∇2
xf(x0)∆x2

◦ Optimal step size ∆x obtained by derivative ∇∆x:

∇∆xf(∆x) = ∇xf(x0) +∇2
xf(x0)∆x

!
= 0

⇐⇒

∆x = −∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 5 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Taylor Expansion

◦ 2nd-Order Taylor Expansion around x0:

f(∆x) = f(x0) +∇xf(x0)∆x+
1

2
∇2
xf(x0)∆x2

◦ Optimal step size ∆x obtained by derivative ∇∆x:

∇∆xf(∆x) = ∇xf(x0) +∇2
xf(x0)∆x

!
= 0

⇐⇒

∆x = −∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 5 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Taylor Expansion

◦ 2nd-Order Taylor Expansion around x0:

f(∆x) = f(x0) +∇xf(x0)∆x+
1

2
∇2
xf(x0)∆x2

◦ Optimal step size ∆x obtained by derivative ∇∆x:

∇∆xf(∆x) = ∇xf(x0) +∇2
xf(x0)∆x

!
= 0

⇐⇒

∆x = −∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 5 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Taylor Expansion

◦ 2nd-Order Taylor Expansion around x0:

f(∆x) = f(x0) +∇xf(x0)∆x+
1

2
∇2
xf(x0)∆x2

◦ Optimal step size ∆x obtained by derivative ∇∆x:

∇∆xf(∆x) = ∇xf(x0) +∇2
xf(x0)∆x

!
= 0

⇐⇒

∆x = −∇xf(x0)

∇2
xf(x0)

Ludwig Winkler GPyTorch May 14, 2019 5 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a
= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a
= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a
= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a

= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a
= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

2nd-Order Optimization of Quadratic Functions
Example

◦ Quadratic optimization problem with minimum d

min f(x) = a(x− d)2 + e

◦ First and second order derivatives

∇xf(x) = 2a(x− d) ; ∇2
xf(x) = 2a

◦ Optimal step size due to 2nd order derivative information

x∗ = x0 −
∇xf(x0)

∇2
xf(x0)

= x0 −
2a(x0 − d)

2a
= x0 − (x0 − d)

= d

Ludwig Winkler GPyTorch May 14, 2019 6 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent

◦ Combines conjugate projections with 2nd-Order optimization

◦ Minimization of quadratic problem with initial point x0:

min
x

f(x) =
1

2
xTAx+ bTx

∇xf(x) = Ax+ b

∇2
xf(x) = A

◦ Notational simplification:

g(x) = ∇xf(x) = Ax+ b

H = ∇2
xf(x) = A

Ludwig Winkler GPyTorch May 14, 2019 7 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent

◦ Combines conjugate projections with 2nd-Order optimization

◦ Minimization of quadratic problem with initial point x0:

min
x

f(x) =
1

2
xTAx+ bTx

∇xf(x) = Ax+ b

∇2
xf(x) = A

◦ Notational simplification:

g(x) = ∇xf(x) = Ax+ b

H = ∇2
xf(x) = A

Ludwig Winkler GPyTorch May 14, 2019 7 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent
Search Direction

◦ Conjugacy includes linear space transformation by A

〈x; y〉 = xT y = xT Iy = 〈x; y〉I
〈x; y〉A = xTAy

◦ Initial point x0 with gradient g0 = p0 = ∇xf(x0)

◦ Sequential search directions pi span vector space

◦ Enforce orthogonality between sequential search directions

pi = g(xi)−
i−1∑
k=0

〈g(xi); pk〉A
〈pk; pk〉A

pk

◦ In N dimensions this leads to a maximum of N search directions

Ludwig Winkler GPyTorch May 14, 2019 8 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent
Search Direction

◦ Conjugacy includes linear space transformation by A

〈x; y〉 = xT y = xT Iy = 〈x; y〉I
〈x; y〉A = xTAy

◦ Initial point x0 with gradient g0 = p0 = ∇xf(x0)

◦ Sequential search directions pi span vector space

◦ Enforce orthogonality between sequential search directions

pi = g(xi)−
i−1∑
k=0

〈g(xi); pk〉A
〈pk; pk〉A

pk

◦ In N dimensions this leads to a maximum of N search directions

Ludwig Winkler GPyTorch May 14, 2019 8 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent
Search Direction

◦ Conjugacy includes linear space transformation by A

〈x; y〉 = xT y = xT Iy = 〈x; y〉I
〈x; y〉A = xTAy

◦ Initial point x0 with gradient g0 = p0 = ∇xf(x0)

◦ Sequential search directions pi span vector space

◦ Enforce orthogonality between sequential search directions

pi = g(xi)−
i−1∑
k=0

〈g(xi); pk〉A
〈pk; pk〉A

pk

◦ In N dimensions this leads to a maximum of N search directions

Ludwig Winkler GPyTorch May 14, 2019 8 / 21

2nd-Order Optimization of Quadratic Functions

Conjugate Gradient Descent
Search Direction

◦ Conjugacy includes linear space transformation by A

〈x; y〉 = xT y = xT Iy = 〈x; y〉I
〈x; y〉A = xTAy

◦ Initial point x0 with gradient g0 = p0 = ∇xf(x0)

◦ Sequential search directions pi span vector space

◦ Enforce orthogonality between sequential search directions

pi = g(xi)−
i−1∑
k=0

〈g(xi); pk〉A
〈pk; pk〉A

pk

◦ In N dimensions this leads to a maximum of N search directions

Ludwig Winkler GPyTorch May 14, 2019 8 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(∆xi) = f(xi) + g(xi)
T (xi −∆xi) +

1

2
(xi −∆xi)

TH(xi −∆xi)

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(∆xi) = f(xi) + g(xi)
T (xi −∆xi)︸ ︷︷ ︸

αpi

+
1

2

T

(xi −∆xi)︸ ︷︷ ︸
αpi

H (xi −∆xi)︸ ︷︷ ︸
αpi

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(α) = f(xi) + g(xi)
T (αpi) +

1

2
(αpi)

TH(αpi)

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(α) = f(xi) + αg(xi)
T pi +

1

2
α2pTi Hpi

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(α) = f(xi) + αg(xi)
T pi +

1

2
α2pTi Hpi

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Conjugate Gradient Descent
Step Size

◦ Initial point x0 with gradient p0 = g(x0)

◦ Taylor Expansion around xi with ∆xi = xi − αpi:

f(α) = f(xi) + αg(xi)
T pi +

1

2
α2pTi Hpi

◦ Optimal stepsize α computable:

∇αf(xi) = g(xi)
T pi + αpTi Hpi

!
= 0

α = −g(xi)
T pi

pTi Hpi
= −(Axi + b)T pi

pTi Api

Ludwig Winkler GPyTorch May 14, 2019 9 / 21

Conjugate Gradient Descent

Iterative Conjugate Gradient Descent

◦ Leverage A-orthogonality of Krylov sequence

◦ Search direction are mutually orthogonal due to optimal α

◦ Allows recursive computation of stepsize α and descent correction β

◦ Error metric ||Ax+ b||22 ≤ ε
◦ Usually p� D steps in D dimensions required for convergence

◦ Linear solve with only Matrix-Vector-Multiplications (MVM)

Ludwig Winkler GPyTorch May 14, 2019 10 / 21

Conjugate Gradient Descent

Iterative Conjugate Gradient Descent

◦ Leverage A-orthogonality of Krylov sequence

◦ Search direction are mutually orthogonal due to optimal α

◦ Allows recursive computation of stepsize α and descent correction β

◦ Error metric ||Ax+ b||22 ≤ ε
◦ Usually p� D steps in D dimensions required for convergence

◦ Linear solve with only Matrix-Vector-Multiplications (MVM)

Ludwig Winkler GPyTorch May 14, 2019 10 / 21

Gaussian Processes

Gaussian Processes

◦ Data set D = {X, y} = {xn, yn}Nn=0

◦ Compute kernel matrix [KXX]ij = K(xi, xj)

K(xi, xj) = α exp

[
−1

2

||xi − xj ||2
l2

]
θ = {α, l}

◦ Use KXX as covariance matrix in N (y|0,KXX)

◦ Large entries in KXX result in high covariance in y

Ludwig Winkler GPyTorch May 14, 2019 11 / 21

Gaussian Processes

Gaussian Processes

◦ Data set D = {X, y} = {xn, yn}Nn=0

◦ Compute kernel matrix [KXX]ij = K(xi, xj)

K(xi, xj) = α exp

[
−1

2

||xi − xj ||2
l2

]
θ = {α, l}

◦ Use KXX as covariance matrix in N (y|0,KXX)

◦ Large entries in KXX result in high covariance in y

Ludwig Winkler GPyTorch May 14, 2019 11 / 21

Gaussian Processes

Gaussian Processes
Inference in Gaussian Processes

◦ Compute predictive distribution

p(y∗|y,X,X∗) = N (y∗|µ(y,X,X∗),Σ(y,X,X∗))

◦ Mean µ(y,X,X∗) and covariance Σ(y,X,X∗) computable with

µ(y,X,X∗) = KX∗XK
−1
XXy

Σ(X,X∗) = KX∗X∗ −KX∗XK
−1
XXKXX∗

Ludwig Winkler GPyTorch May 14, 2019 12 / 21

Gaussian Processes

Gaussian Processes
Inference in Gaussian Processes

◦ Compute predictive distribution

p(y∗|y,X,X∗) = N (y∗|µ(y,X,X∗),Σ(y,X,X∗))

◦ Mean µ(y,X,X∗) and covariance Σ(y,X,X∗) computable with

µ(y,X,X∗) = KX∗XK
−1
XXy

Σ(X,X∗) = KX∗X∗ −KX∗XK
−1
XXKXX∗

Ludwig Winkler GPyTorch May 14, 2019 12 / 21

Gaussian Processes

Gaussian Processes
Derivation

◦ Straightforward derivation of conditional from normal distribution

p(y∗, y,X∗, X) ∝ exp

[
−1

2

[
y
y∗

]T [
KXX KXX∗

KX∗X KX∗X∗

]−1 [
y
y∗

]]

= exp

[
−1

2

[
y
y∗

]T [
P Q
R S

] [
y
y∗

]]

= exp

[
−1

2

(
yTPy + yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]
p(y∗|y,X,X∗) ∝ exp

[
−1

2

(
yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]

Ludwig Winkler GPyTorch May 14, 2019 13 / 21

Gaussian Processes

Gaussian Processes
Derivation

◦ Straightforward derivation of conditional from normal distribution

p(y∗, y,X∗, X) ∝ exp

[
−1

2

[
y
y∗

]T [
KXX KXX∗

KX∗X KX∗X∗

]−1 [
y
y∗

]]

= exp

[
−1

2

[
y
y∗

]T [
P Q
R S

] [
y
y∗

]]

= exp

[
−1

2

(
yTPy + yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]
p(y∗|y,X,X∗) ∝ exp

[
−1

2

(
yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]

Ludwig Winkler GPyTorch May 14, 2019 13 / 21

Gaussian Processes

Gaussian Processes
Derivation

◦ Straightforward derivation of conditional from normal distribution

p(y∗, y,X∗, X) ∝ exp

[
−1

2

[
y
y∗

]T [
KXX KXX∗

KX∗X KX∗X∗

]−1 [
y
y∗

]]

= exp

[
−1

2

[
y
y∗

]T [
P Q
R S

] [
y
y∗

]]

= exp

[
−1

2

(
yTPy + yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]

p(y∗|y,X,X∗) ∝ exp

[
−1

2

(
yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]

Ludwig Winkler GPyTorch May 14, 2019 13 / 21

Gaussian Processes

Gaussian Processes
Derivation

◦ Straightforward derivation of conditional from normal distribution

p(y∗, y,X∗, X) ∝ exp

[
−1

2

[
y
y∗

]T [
KXX KXX∗

KX∗X KX∗X∗

]−1 [
y
y∗

]]

= exp

[
−1

2

[
y
y∗

]T [
P Q
R S

] [
y
y∗

]]

= exp

[
−1

2

(
yTPy + yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]
p(y∗|y,X,X∗) ∝ exp

[
−1

2

(
yTQy∗ + yT∗ Ry + yT∗ Sy∗

)]

Ludwig Winkler GPyTorch May 14, 2019 13 / 21

Gaussian Processes

Gaussian Processes
Training in Gaussian Processes

◦ Minimize marginal NLL to optimize kernel parameters

min
θ
− log p(D; θ) ∝ log |KXX | − yTK−1

XXy

◦ Optimize θ with

∇θ − log p(D; θ) = Tr

[
K−1
XX

dKXX

dθ

]
+ yTK−1

XX

dKXX

dθ
K−1
XXy

◦ Linear algebra becomes prohibitive for large sample sizes N

◦ Learn smaller data set DIP = {xn, yn}N
IP

n=0

Ludwig Winkler GPyTorch May 14, 2019 14 / 21

Gaussian Processes

Gaussian Processes
Training in Gaussian Processes

◦ Minimize marginal NLL to optimize kernel parameters

min
θ
− log p(D; θ) ∝ log |KXX | − yTK−1

XXy

◦ Optimize θ with

∇θ − log p(D; θ) = Tr

[
K−1
XX

dKXX

dθ

]
+ yTK−1

XX

dKXX

dθ
K−1
XXy

◦ Linear algebra becomes prohibitive for large sample sizes N

◦ Learn smaller data set DIP = {xn, yn}N
IP

n=0

Ludwig Winkler GPyTorch May 14, 2019 14 / 21

Gaussian Processes

Gaussian Processes
Training in Gaussian Processes

◦ Minimize marginal NLL to optimize kernel parameters

min
θ
− log p(D; θ) ∝ log |KXX | − yTK−1

XXy

◦ Optimize θ with

∇θ − log p(D; θ) = Tr

[
K−1
XX

dKXX

dθ

]
+ yTK−1

XX

dKXX

dθ
K−1
XXy

◦ Linear algebra becomes prohibitive for large sample sizes N

◦ Learn smaller data set DIP = {xn, yn}N
IP

n=0

Ludwig Winkler GPyTorch May 14, 2019 14 / 21

Gaussian Processes

Computational Complexity

Computationally expensive operations:

◦ K−1
XXy = u occurs frequently and is expensive

◦ log |KXX | in marginal NLL

◦ Tr
[
K−1
XX

dKXX
dθ

]
in kernel parameter optimization

Modified Batched Conjugate Gradients (mBCG):

◦ Conjugate Gradient Descent with Preconditioning

◦ Hutchinsons Stochastic Trace Estimation

◦ Tridiagonalization with Lanczos Algorithm

Ludwig Winkler GPyTorch May 14, 2019 15 / 21

Gaussian Processes

Computational Complexity

Computationally expensive operations:

◦ K−1
XXy = u occurs frequently and is expensive

◦ log |KXX | in marginal NLL

◦ Tr
[
K−1
XX

dKXX
dθ

]
in kernel parameter optimization

Modified Batched Conjugate Gradients (mBCG):

◦ Conjugate Gradient Descent with Preconditioning

◦ Hutchinsons Stochastic Trace Estimation

◦ Tridiagonalization with Lanczos Algorithm

Ludwig Winkler GPyTorch May 14, 2019 15 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u||

= min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

CG with Preconditioning

◦ Minimize reformulated problem K−1
XXy = u

min
u
||K−1

XXy − u|| = min
u
||y −KXX u||

◦ Use CG to optimize ||y −KXX u|| ≤ ε in p� N iterations

◦ Precondition KXX ⇒ PKXX to reduce pathological curvature

◦ Optimal P = K−1
XX , but low rank approximation already sufficient

◦ Pivoted Cholesky decomposition KXX = LkL
T
k of rank k

◦ Computation, reconstruction, inverse and log determinant all O(Nk2)

◦ k = 5, 7, 9, k � N already offer significant gains

Ludwig Winkler GPyTorch May 14, 2019 16 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A]

= Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]]

= E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]]

= E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y

z1 z2 . . . zt

] = KXX [u0

u1 u2 . . . ut

]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y z1 z2 . . . zt] = KXX [u0 u1 u2 . . . ut]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Stochastic Trace Estimation

◦ Trace of a square matrix A ∈ RN×N : Tr(A) =
∑N

i=0 aii

◦ Random vector zi ∼ N (0, I) ∈ RN ⇒ E[zzT] = I

Tr[A] = Tr[AE[zzT]] = E[Tr[zTAz]] = E[zTAz]

◦ CG solves iteratively with Matrix-Vector-Multiplications

◦ Straightforward to parallelize to Matrix-Matrix-Multiplications

[y z1 z2 . . . zt] = KXX [u0 u1 u2 . . . ut]

◦ zi ∈ RN and ui ∈ RN for subsequent stochastic approximations

Ludwig Winkler GPyTorch May 14, 2019 17 / 21

GPyTorch

Modified Batch Conjugate Gradient Descent

◦ Batch Conjugate Gradient yields {ut = K−1
XXzt}Tt=0

◦ Stochastic trace estimation with results from mBCG

Tr

[
K−1
XX

dKXX

dθ

]
= E[zTK−1

XX︸ ︷︷ ︸
u

dKXX

dθ
z]

Ludwig Winkler GPyTorch May 14, 2019 18 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX)

= Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT))

= Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Conjugate Gradients and Lanczos

◦ Eigendecomposition of KXX in log detKXX

log detKXX = Tr(logKXX) = Tr(log(QTQT)) = Tr(Q log TQT)

◦ Lanczos Algorithm closely related to Conjugate Gradient Descent

◦ α’s and β’s from CG used to construct tridiagonal Lanczos matrix T

◦ First column of Qt ∈ Rn×p is zt ∼ N (0, I)

◦ Factorizations {KXX = QtTtQ
T
t }Tt=0 as a byproduct of BCG

◦ Reuse stochastic trace estimation trick:

Tr(Q log TQT) = E[zTQt log TtQ
T
t z] = E[eT1 log Tte1]

Ludwig Winkler GPyTorch May 14, 2019 19 / 21

GPyTorch

Recap

◦ Precondition with low rank approximation P−1 = (LkL
T
k + σI)−1

◦ u0 = K−1
XXy and {ut = K−1

XXzt}Tt=0 from mBCG

◦ log |KXX | = Tr [logKXX] = E[eT1 log Te1]

◦ Modified training of Gaussian Process:

L(θ|X, y) ∝ log |KXX |+ yTK−1
XXy

dL

dθ
= yTK−1

XX

dKXX

dθ
K−1
XXy + Tr

[
K−1
XX

dKXX

dθ

]
⇓

L(θ|X, y) ∝ E
[
eT1 log Te1

]
+ yTu0

dL

dθ
= uT0

dKXX

dθ
u0 + E

[
uT
dKXX

dθ
z

]

Ludwig Winkler GPyTorch May 14, 2019 20 / 21

GPyTorch

Recap

◦ Precondition with low rank approximation P−1 = (LkL
T
k + σI)−1

◦ u0 = K−1
XXy and {ut = K−1

XXzt}Tt=0 from mBCG

◦ log |KXX | = Tr [logKXX] = E[eT1 log Te1]

◦ Modified training of Gaussian Process:

L(θ|X, y) ∝ log |KXX |+ yTK−1
XXy

dL

dθ
= yTK−1

XX

dKXX

dθ
K−1
XXy + Tr

[
K−1
XX

dKXX

dθ

]

⇓
L(θ|X, y) ∝ E

[
eT1 log Te1

]
+ yTu0

dL

dθ
= uT0

dKXX

dθ
u0 + E

[
uT
dKXX

dθ
z

]

Ludwig Winkler GPyTorch May 14, 2019 20 / 21

GPyTorch

Recap

◦ Precondition with low rank approximation P−1 = (LkL
T
k + σI)−1

◦ u0 = K−1
XXy and {ut = K−1

XXzt}Tt=0 from mBCG

◦ log |KXX | = Tr [logKXX] = E[eT1 log Te1]

◦ Modified training of Gaussian Process:

L(θ|X, y) ∝ log |KXX |+ yTK−1
XXy

dL

dθ
= yTK−1

XX

dKXX

dθ
K−1
XXy + Tr

[
K−1
XX

dKXX

dθ

]
⇓

L(θ|X, y) ∝ E
[
eT1 log Te1

]
+ yTu0

dL

dθ
= uT0

dKXX

dθ
u0 + E

[
uT
dKXX

dθ
z

]

Ludwig Winkler GPyTorch May 14, 2019 20 / 21

GPyTorch

Recap

◦ Precondition with low rank approximation P−1 = (LkL
T
k + σI)−1

◦ u0 = K−1
XXy and {ut = K−1

XXzt}Tt=0 from mBCG

◦ log |KXX | = Tr [logKXX] = E[eT1 log Te1]

◦ Modified training of Gaussian Process:

L(θ|X, y) ∝ log |KXX |+ yTK−1
XXy

dL

dθ
= yTK−1

XX

dKXX

dθ
K−1
XXy + Tr

[
K−1
XX

dKXX

dθ

]
⇓

L(θ|X, y) ∝ E
[
eT1 log Te1

]
+ yTu0

dL

dθ
= uT0

dKXX

dθ
u0 + E

[
uT
dKXX

dθ
z

]
Ludwig Winkler GPyTorch May 14, 2019 20 / 21

GPyTorch

Recap

◦ Precondition with low rank approximation P−1 = (LkL
T
k + σI)−1

◦ u0 = K−1
XXy and {ut = K−1

XXzt}Tt=0 from mBCG

◦ log |KXX | = Tr [logKXX] = E[eT1 log Te1]

◦ Modified training of Gaussian Process:

L(θ|X, y) ∝ log |KXX |+ yTK−1
XXy

dL

dθ
= yTK−1

XX

dKXX

dθ
K−1
XXy + Tr

[
K−1
XX

dKXX

dθ

]
⇓

L(θ|X, y) ∝ E
[
eT1 log Te1

]
+ yTu0

dL

dθ
= uT0

dKXX

dθ
u0 + E

[
uT
dKXX

dθ
z

]
Ludwig Winkler GPyTorch May 14, 2019 20 / 21

Going Deep

Excursion into Deep Gaussian Processes

◦ Deep architectures compute layer-wise representations

◦ Single kernel parameters θ often insufficient

GP

GP

GP

GP

{X, y, θ}{X, y, θ}

{X, y, θ}

{X, y, θ}

◦ Seperate inducing points and kernel parameters {X, y, θ}
◦ Sample hidden representation from posterior distribution

Ludwig Winkler GPyTorch May 14, 2019 21 / 21

Going Deep

Excursion into Deep Gaussian Processes

◦ Deep architectures compute layer-wise representations

◦ Single kernel parameters θ often insufficient

GP

GP

GP

GP

{X, y, θ}{X, y, θ}

{X, y, θ}

{X, y, θ}

◦ Seperate inducing points and kernel parameters {X, y, θ}
◦ Sample hidden representation from posterior distribution

Ludwig Winkler GPyTorch May 14, 2019 21 / 21

Going Deep

Excursion into Deep Gaussian Processes

◦ Deep architectures compute layer-wise representations

◦ Single kernel parameters θ often insufficient

GP

GP

GP

GP

{X, y, θ}{X, y, θ}

{X, y, θ}

{X, y, θ}

◦ Seperate inducing points and kernel parameters {X, y, θ}

◦ Sample hidden representation from posterior distribution

Ludwig Winkler GPyTorch May 14, 2019 21 / 21

Going Deep

Excursion into Deep Gaussian Processes

◦ Deep architectures compute layer-wise representations

◦ Single kernel parameters θ often insufficient

GP

GP

GP

GP

{X, y, θ}{X, y, θ}

{X, y, θ}

{X, y, θ}

◦ Seperate inducing points and kernel parameters {X, y, θ}
◦ Sample hidden representation from posterior distribution

Ludwig Winkler GPyTorch May 14, 2019 21 / 21

	Gram-Schmidt Orthogonalization
	2nd-Order Optimization of Quadratic Functions
	Conjugate Gradient Descent
	Gaussian Processes
	GPyTorch
	Going Deep

