${\sf GPyTorch}$

Ludwig Winkler

Machine Learning Group TU Berlin

May 14, 2019

1	14/100	M///m	100
			NIEI
_	· · · · · · · · · · · · · · · · · · ·		

GPyTorch

Outline

Gram-Schmidt Orthogonalization

 $2^{nd}\mbox{-}\mathsf{Order}$ Optimization of Quadratic Functions

Conjugate Gradient Descent

Gaussian Processes

GPyTorch

Going Deep

- Linearly independent vectors v_1, v_2 span a vector space
- Find orthogonal vectors u_1, u_2 in that vector space

1	14/100	1/1/	100	108
		~ ~ ~		vier
_				

- Linearly independent vectors v_1, v_2 span a vector space
- Find orthogonal vectors u_1, u_2 in that vector space

	14/100	A /A/	in la	0.0
			III N	Le l
_				

- Linearly independent vectors v_1, v_2 span a vector space
- Find orthogonal vectors u_1, u_2 in that vector space

$$\frac{\langle v_2; u_1 \rangle}{\langle u_1; u_1 \rangle} u_1$$

1 110	14/100	$\Lambda \Lambda I$	տե	rlor
Luu	IVVIE			viei.

- Linearly independent vectors v_1, v_2 span a vector space
- Find orthogonal vectors u_1, u_2 in that vector space

$$v_2 - \frac{\langle v_2; u_1 \rangle}{\langle u_1; u_1 \rangle} u_1$$

	- \	A/:	-	
_	 - 1			
	_			

- Linearly independent vectors v_1, v_2 span a vector space
- Find orthogonal vectors u_1, u_2 in that vector space

$$u_2 = v_2 - \frac{\langle v_2; u_1 \rangle}{\langle u_1; u_1 \rangle} u_1$$

2nd-Order Optimization of Quadratic Functions

• Quadratic optimization problem

$$\min_{x} \quad f(x) = a(x-d)^2 + e$$

2nd-Order Optimization of Quadratic Functions

• Quadratic optimization problem

$$\min_{x} \quad f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

< □ > < 同 > < 回 > < 回 > < 回 >

May 14, 2019

4 / 21

2nd-Order Optimization of Quadratic Functions

• Quadratic optimization problem

$$\min_{x} \quad f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

• Optimal step size due to 2^{nd} order derivative information

$$x^* = x_0 - \frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)}$$

Ludwig Winkler

May 14, 2019 4 / 21

• 2^{nd} -Order Taylor Expansion around x_0 :

$$f(\Delta x) = f(x_0)$$

• 2^{nd} -Order Taylor Expansion around x_0 :

$$f(\Delta x) = f(x_0) + \nabla_x f(x_0) \Delta x$$

• 2^{nd} -Order Taylor Expansion around x_0 :

$$f(\Delta x) = f(x_0) + \nabla_x f(x_0) \Delta x + \frac{1}{2} \nabla_x^2 f(x_0) \Delta x^2$$

• 2^{nd} -Order Taylor Expansion around x_0 :

$$f(\Delta x) = f(x_0) + \nabla_x f(x_0) \Delta x + \frac{1}{2} \nabla_x^2 f(x_0) \Delta x^2$$

• Optimal step size Δx obtained by derivative $\nabla_{\Delta x}$:

$$\nabla_{\Delta x} f(\Delta x) = \nabla_x f(x_0) + \nabla_x^2 f(x_0) \Delta x \stackrel{!}{=} 0$$

A D N A B N A B N A B N

• 2^{nd} -Order Taylor Expansion around x_0 :

$$f(\Delta x) = f(x_0) + \nabla_x f(x_0) \Delta x + \frac{1}{2} \nabla_x^2 f(x_0) \Delta x^2$$

• Optimal step size Δx obtained by derivative $\nabla_{\Delta x}$:

$$\nabla_{\Delta x} f(\Delta x) = \nabla_x f(x_0) + \nabla_x^2 f(x_0) \Delta x \stackrel{!}{=} 0$$

$$\longleftrightarrow$$

$$\Delta x = -\frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)}$$

A D N A B N A B N A B N

 \circ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

A D N A B N A B N A B N

 \circ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

 $\, {\rm \circ} \,$ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

• Optimal step size due to 2^{nd} order derivative information

$$x^* = x_0 - \frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)}$$

Ludwig Winkler

May 14, 2019 6 / 21

 \circ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

• Optimal step size due to 2^{nd} order derivative information

$$x^* = x_0 - \frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)} \\ = x_0 - \frac{2a(x_0 - d)}{2a}$$

Ludwig Winkler

May 14, 2019 6 / 21

 $\, {\rm \circ} \,$ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

• Optimal step size due to 2^{nd} order derivative information

$$x^* = x_0 - \frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)}$$

= $x_0 - \frac{2a(x_0 - d)}{2a}$
= $x_0 - (x_0 - d)$

May 14, 2019 6 / 21

 \circ Quadratic optimization problem with minimum d

$$\min f(x) = a(x-d)^2 + e$$

• First and second order derivatives

$$\nabla_x f(x) = 2a(x-d)$$
; $\nabla_x^2 f(x) = 2a$

• Optimal step size due to 2^{nd} order derivative information

$$x^* = x_0 - \frac{\nabla_x f(x_0)}{\nabla_x^2 f(x_0)} \\ = x_0 - \frac{2a(x_0 - d)}{2a} \\ = x_0 - (x_0 - d) \\ = d$$

May 14, 2019 6 / 21

Conjugate Gradient Descent

- Combines conjugate projections with 2^{nd} -Order optimization
- Minimization of quadratic problem with initial point x_0 :

$$\begin{split} \min_{x} & f(x) = \frac{1}{2}x^{T}Ax + b^{T}x\\ \nabla_{x}f(x) &= Ax + b\\ \nabla_{x}^{2}f(x) &= A \end{split}$$

Conjugate Gradient Descent

- Combines conjugate projections with 2^{nd} -Order optimization
- Minimization of quadratic problem with initial point x_0 :

$$\min_{x} f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$$
$$\nabla_{x}f(x) = Ax + b$$
$$\nabla_{x}^{2}f(x) = A$$

Notational simplification:

$$g(x) = \nabla_x f(x) = Ax + b$$
$$H = \nabla_x^2 f(x) = A$$

 $\,\circ\,$ Conjugacy includes linear space transformation by A

$$\langle x; y \rangle = x^T y = x^T I y = \langle x; y \rangle_I$$

 $\langle x; y \rangle_A = x^T A y$

 $\,\circ\,$ Conjugacy includes linear space transformation by A

- Initial point x_0 with gradient $g_0 = p_0 = \nabla_x f(x_0)$
- Sequential search directions p_i span vector space

 \circ Conjugacy includes linear space transformation by A

$$\begin{aligned} \langle x;y\rangle &= x^Ty = x^TIy = \langle x;y\rangle_I \\ \langle x;y\rangle_A &= x^TAy \end{aligned}$$

- Initial point x_0 with gradient $g_0 = p_0 = \nabla_x f(x_0)$
- Sequential search directions p_i span vector space
- Enforce orthogonality between sequential search directions

$$p_i = g(x_i) - \sum_{k=0}^{i-1} \frac{\langle g(x_i); p_k \rangle_A}{\langle p_k; p_k \rangle_A} p_k$$

 \circ Conjugacy includes linear space transformation by A

$$\begin{aligned} \langle x;y\rangle &= x^Ty = x^TIy = \langle x;y\rangle_I \\ \langle x;y\rangle_A &= x^TAy \end{aligned}$$

- Initial point x_0 with gradient $g_0 = p_0 = \nabla_x f(x_0)$
- Sequential search directions p_i span vector space
- Enforce orthogonality between sequential search directions

$$p_i = g(x_i) - \sum_{k=0}^{i-1} \frac{\langle g(x_i); p_k \rangle_A}{\langle p_k; p_k \rangle_A} p_k$$

 $\,\circ\,$ In N dimensions this leads to a maximum of N search directions

Ludwig Winkler

May 14, 2019 8 / 21

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\Delta x_{i}) = f(x_{i}) + g(x_{i})^{T}(x_{i} - \Delta x_{i}) + \frac{1}{2}(x_{i} - \Delta x_{i})^{T}H(x_{i} - \Delta x_{i})$$

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\Delta x_i) = f(x_i) + g(x_i)^T \underbrace{(x_i - \Delta x_i)}_{\alpha p_i} + \frac{1}{2} \underbrace{(x_i - \Delta x_i)}_{\alpha p_i} H \underbrace{(x_i - \Delta x_i)}_{\alpha p_i}$$

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\alpha) = f(x_i) + g(x_i)^T (\alpha p_i) + \frac{1}{2} (\alpha p_i)^T H(\alpha p_i)$$

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\alpha) = f(x_i) + \alpha g(x_i)^T p_i + \frac{1}{2} \alpha^2 p_i^T H p_i$$

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\alpha) = f(x_i) + \alpha g(x_i)^T p_i + \frac{1}{2} \alpha^2 p_i^T H p_i$$

• Optimal stepsize α computable:

$$\nabla_{\alpha} f(x_i) = g(x_i)^T p_i + \alpha p_i^T H p_i \stackrel{!}{=} 0$$

- Initial point x_0 with gradient $p_0 = g(x_0)$
- Taylor Expansion around x_i with $\Delta x_i = x_i \alpha p_i$:

$$f(\alpha) = f(x_i) + \alpha g(x_i)^T p_i + \frac{1}{2} \alpha^2 p_i^T H p_i$$

• Optimal stepsize α computable:

$$\nabla_{\alpha} f(x_i) = g(x_i)^T p_i + \alpha p_i^T H p_i \stackrel{!}{=} 0$$

$$\alpha = -\frac{g(x_i)^T p_i}{p_i^T H p_i} = -\frac{(Ax_i + b)^T p_i}{p_i^T A p_i}$$

May 14, 2019 9 / 21

Iterative Conjugate Gradient Descent

- Leverage A-orthogonality of Krylov sequence
- $\circ\,$ Search direction are mutually orthogonal due to optimal lpha
- $\circ\,$ Allows recursive computation of stepsize α and descent correction $\beta\,$

< ロト < 同ト < ヨト < ヨト

May 14, 2019

10 / 21

Iterative Conjugate Gradient Descent

- $\circ\,$ Leverage A-orthogonality of Krylov sequence
- $\circ\,$ Search direction are mutually orthogonal due to optimal lpha
- Allows recursive computation of stepsize α and descent correction β
- Error metric $||Ax + b||_2^2 \le \epsilon$
- Usually $p \ll D$ steps in D dimensions required for convergence
- Linear solve with only Matrix-Vector-Multiplications (MVM)

< □ > < □ > < □ > < □ > < □ > < □ >

May 14, 2019

10 / 21

Gaussian Processes

- Data set $\mathcal{D} = \{X, y\} = \{x_n, y_n\}_{n=0}^N$
- Compute kernel matrix $[K_{XX}]_{ij} = K(x_i, x_j)$

$$K(x_i, x_j) = \alpha \exp\left[-\frac{1}{2} \frac{||x_i - x_j||_2}{l^2}\right]$$
$$\theta = \{\alpha, l\}$$
- Data set $\mathcal{D} = \{X, y\} = \{x_n, y_n\}_{n=0}^N$
- Compute kernel matrix $[K_{XX}]_{ij} = K(x_i, x_j)$

$$K(x_i, x_j) = \alpha \exp\left[-\frac{1}{2} \frac{||x_i - x_j||_2}{l^2}\right]$$
$$\theta = \{\alpha, l\}$$

- Use K_{XX} as covariance matrix in $\mathcal{N}(y|0,K_{XX})$
- Large entries in K_{XX} result in high covariance in y

Inference in Gaussian Processes

• Compute predictive distribution

 $p(y_*|y, X, X_*) = \mathcal{N}(y_*|\mu(y, X, X_*), \Sigma(y, X, X_*))$

1	14/100	1/1/	100	108
		~ ~ ~		vier
_				

Inference in Gaussian Processes

• Compute predictive distribution

$$p(y_*|y, X, X_*) = \mathcal{N}(y_*|\mu(y, X, X_*), \Sigma(y, X, X_*))$$

• Mean $\mu(y, X, X_*)$ and covariance $\Sigma(y, X, X_*)$ computable with

$$\mu(y, X, X_*) = K_{X_*X} K_{XX}^{-1} y$$

$$\Sigma(X, X_*) = K_{X_*X_*} - K_{X_*X} K_{XX}^{-1} K_{XX_*}$$

イロト イポト イヨト イヨト

- 20

12 / 21

May 14, 2019

Ludwig Winkler

• Straightforward derivation of conditional from normal distribution

$$p(y_*, y, X_*, X) \propto \exp\left[-\frac{1}{2} \begin{bmatrix} y\\ y_* \end{bmatrix}^T \begin{bmatrix} K_{XX} & K_{XX_*}\\ K_{X_*X} & K_{X_*X_*} \end{bmatrix}^{-1} \begin{bmatrix} y\\ y_* \end{bmatrix}\right]$$

イロト イポト イヨト イヨト

3

13 / 21

May 14, 2019

• Straightforward derivation of conditional from normal distribution

$$p(y_*, y, X_*, X) \propto \exp\left[-\frac{1}{2} \begin{bmatrix} y\\ y_* \end{bmatrix}^T \begin{bmatrix} K_{XX} & K_{XX_*}\\ K_{X_*X} & K_{X_*X_*} \end{bmatrix}^{-1} \begin{bmatrix} y\\ y_* \end{bmatrix}\right]$$
$$= \exp\left[-\frac{1}{2} \begin{bmatrix} y\\ y_* \end{bmatrix}^T \begin{bmatrix} P & Q\\ R & S \end{bmatrix} \begin{bmatrix} y\\ y_* \end{bmatrix}\right]$$

불▶◀불▶ 불 ∽९९여 May 14, 2019 13 / 21

• Straightforward derivation of conditional from normal distribution

$$p(y_*, y, X_*, X) \propto \exp\left[-\frac{1}{2} \begin{bmatrix} y\\ y_* \end{bmatrix}^T \begin{bmatrix} K_{XX} & K_{XX*}\\ K_{X*X} & K_{X*X*} \end{bmatrix}^{-1} \begin{bmatrix} y\\ y_* \end{bmatrix}\right]$$
$$= \exp\left[-\frac{1}{2} \begin{bmatrix} y\\ y_* \end{bmatrix}^T \begin{bmatrix} P & Q\\ R & S \end{bmatrix} \begin{bmatrix} y\\ y_* \end{bmatrix}\right]$$
$$= \exp\left[-\frac{1}{2} \left(y^T P y + y^T Q y_* + y_*^T R y + y_*^T S y_*\right)\right]$$

• Straightforward derivation of conditional from normal distribution

$$p(y_*, y, X_*, X) \propto \exp\left[-\frac{1}{2} \begin{bmatrix} y \\ y_* \end{bmatrix}^T \begin{bmatrix} K_{XX} & K_{XX*} \\ K_{X*X} & K_{X*X*} \end{bmatrix}^{-1} \begin{bmatrix} y \\ y_* \end{bmatrix}\right]$$
$$= \exp\left[-\frac{1}{2} \begin{bmatrix} y \\ y_* \end{bmatrix}^T \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \begin{bmatrix} y \\ y_* \end{bmatrix}\right]$$
$$= \exp\left[-\frac{1}{2} \left(y^T P y + y^T Q y_* + y_*^T R y + y_*^T S y_*\right)\right]$$
$$p(y_*|y, X, X_*) \propto \exp\left[-\frac{1}{2} \left(y^T Q y_* + y_*^T R y + y_*^T S y_*\right)\right]$$

May 14, 2019 13 / 21

3

Training in Gaussian Processes

o Minimize marginal NLL to optimize kernel parameters

$$\min_{\theta} -\log p(\mathcal{D}; \theta) \propto \log |K_{XX}| - y^T K_{XX}^{-1} y$$

(日) (四) (日) (日) (日)

э

14 / 21

May 14, 2019

Training in Gaussian Processes

• Minimize marginal NLL to optimize kernel parameters

$$\min_{\theta} -\log p(\mathcal{D}; \theta) \propto \log |K_{XX}| - y^T K_{XX}^{-1} y$$

• Optimize θ with

$$\nabla_{\theta} - \log p(\mathcal{D}; \theta) = \mathsf{Tr} \left[K_{XX}^{-1} \frac{dK_{XX}}{d\theta} \right] + y^T K_{XX}^{-1} \frac{dK_{XX}}{d\theta} K_{XX}^{-1} y$$

(日) (四) (日) (日) (日)

э

14 / 21

May 14, 2019

Training in Gaussian Processes

Minimize marginal NLL to optimize kernel parameters

$$\min_{\theta} -\log p(\mathcal{D}; \theta) \propto \log |K_{XX}| - y^T K_{XX}^{-1} y$$

• Optimize θ with

$$\nabla_{\theta} - \log p(\mathcal{D}; \theta) = \mathsf{Tr} \left[K_{XX}^{-1} \frac{dK_{XX}}{d\theta} \right] + y^T K_{XX}^{-1} \frac{dK_{XX}}{d\theta} K_{XX}^{-1} y$$

- Linear algebra becomes prohibitive for large sample sizes N
- Learn smaller data set $\mathcal{D}^{IP} = \{\overline{x}_n, \overline{y}_n\}_{n=0}^{N^{IP}}$

May 14, 2019 14 / 21

< □ > < □ > < □ > < □ > < □ > < □ >

Computational Complexity

Computationally expensive operations:

- $K_{XX}^{-1}y = u$ occurs frequently and is expensive
- $\log |K_{XX}|$ in marginal NLL
- ${\rm Tr}\left[K_{XX}^{-1}\frac{dK_{XX}}{d\theta}\right]$ in kernel parameter optimization

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Computational Complexity

Computationally expensive operations:

- $K_{XX}^{-1}y = u$ occurs frequently and is expensive
- $\log |K_{XX}|$ in marginal NLL
- Tr $\left[K_{XX}^{-1} \frac{dK_{XX}}{d\theta}\right]$ in kernel parameter optimization

Modified Batched Conjugate Gradients (mBCG):

- Conjugate Gradient Descent with Preconditioning
- Hutchinsons Stochastic Trace Estimation
- Tridiagonalization with Lanczos Algorithm

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u||$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

• Use CG to optimize $||y - K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

- Use CG to optimize $||y K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations
- Precondition $K_{XX} \Rightarrow PK_{XX}$ to reduce pathological curvature

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

May 14, 2019

16 / 21

- Use CG to optimize $||y K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations
- Precondition $K_{XX} \Rightarrow PK_{XX}$ to reduce pathological curvature
- Optimal $P = K_{XX}^{-1}$, but low rank approximation already sufficient

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

- Use CG to optimize $||y K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations
- Precondition $K_{XX} \Rightarrow PK_{XX}$ to reduce pathological curvature
- Optimal $P = K_{XX}^{-1}$, but low rank approximation already sufficient
- Pivoted Cholesky decomposition $K_{XX} = L_k L_k^T$ of rank k

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

- Use CG to optimize $||y K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations
- Precondition $K_{XX} \Rightarrow PK_{XX}$ to reduce pathological curvature
- Optimal $P = K_{XX}^{-1}$, but low rank approximation already sufficient
- Pivoted Cholesky decomposition $K_{XX} = L_k L_k^T$ of rank k
- Computation, reconstruction, inverse and log determinant all $\mathcal{O}(Nk^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

May 14, 2019

16 / 21

• Minimize reformulated problem $K_{XX}^{-1}y = u$

$$\min_{u} ||K_{XX}^{-1}y - u|| = \min_{u} ||y - K_{XX} u||$$

- Use CG to optimize $||y K_{XX} u|| \le \epsilon$ in $p \ll N$ iterations
- Precondition $K_{XX} \Rightarrow PK_{XX}$ to reduce pathological curvature
- Optimal $P = K_{XX}^{-1}$, but low rank approximation already sufficient
- Pivoted Cholesky decomposition $K_{XX} = L_k L_k^T$ of rank k
- Computation, reconstruction, inverse and log determinant all $\mathcal{O}(Nk^2)$
- $k = 5, 7, 9, k \ll N$ already offer significant gains

• Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$

- Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

- Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

Tr[A]

- Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]]$$

- Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]] = \mathbb{E}[Tr[z^TAz]]$$

- Trace of a square matrix $A \in \mathbb{R}^{N \times N}$: $Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]] = \mathbb{E}[Tr[z^TAz]] = \mathbb{E}[z^TAz]$$

- Trace of a square matrix $A \in \mathbb{R}^{N \times N} : Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]] = \mathbb{E}[Tr[z^TAz]] = \mathbb{E}[z^TAz]$$

- CG solves iteratively with Matrix-Vector-Multiplications
- Straightforward to parallelize to Matrix-Matrix-Multiplications

$$[y \qquad] = K_{XX}[u_0 \qquad]$$

May 14, 2019

17 / 21

- Trace of a square matrix $A \in \mathbb{R}^{N \times N} : Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]] = \mathbb{E}[Tr[z^TAz]] = \mathbb{E}[z^TAz]$$

- CG solves iteratively with Matrix-Vector-Multiplications
- Straightforward to parallelize to Matrix-Matrix-Multiplications

$$[y \ z_1 \ z_2 \ \dots z_t] = K_{XX}[u_0 \ u_1 \ u_2 \ \dots \ u_t]$$

May 14, 2019

17 / 21

- Trace of a square matrix $A \in \mathbb{R}^{N \times N} : Tr(A) = \sum_{i=0}^{N} a_{ii}$
- Random vector $z_i \sim \mathcal{N}(0, I) \in \mathbb{R}^N \Rightarrow \mathbb{E}[zz^T] = I$

$$Tr[A] = Tr[A\mathbb{E}[zz^T]] = \mathbb{E}[Tr[z^TAz]] = \mathbb{E}[z^TAz]$$

- CG solves iteratively with Matrix-Vector-Multiplications
- Straightforward to parallelize to Matrix-Matrix-Multiplications

$$[y \ z_1 \ z_2 \ \dots z_t] = K_{XX}[u_0 \ u_1 \ u_2 \ \dots \ u_t]$$

• $z_i \in \mathbb{R}^N$ and $u_i \in \mathbb{R}^N$ for subsequent stochastic approximations

May 14, 2019 17 / 21

GPyTorch

Modified Batch Conjugate Gradient Descent

- Batch Conjugate Gradient yields $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$
- Stochastic trace estimation with results from mBCG

$$\operatorname{Tr}\left[K_{XX}^{-1}\frac{dK_{XX}}{d\theta}\right] = \mathbb{E}[\underbrace{z^{T}K_{XX}^{-1}}_{u}\frac{dK_{XX}}{d\theta}z]$$

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX})$

イロト 不得下 イヨト イヨト 二日

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

Lanczos Algorithm closely related to Conjugate Gradient Descent

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

Lanczos Algorithm closely related to Conjugate Gradient Descent
 α's and β's from CG used to construct tridiagonal Lanczos matrix T

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

- Lanczos Algorithm closely related to Conjugate Gradient Descent
- α 's and β 's from CG used to construct tridiagonal Lanczos matrix T
- First column of $Q_t \in \mathbb{R}^{n \times p}$ is $z_t \sim \mathcal{N}(0, I)$
Conjugate Gradients and Lanczos

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

- Lanczos Algorithm closely related to Conjugate Gradient Descent
- α 's and β 's from CG used to construct tridiagonal Lanczos matrix T

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

May 14, 2019

19 / 21

- First column of $Q_t \in \mathbb{R}^{n \times p}$ is $z_t \sim \mathcal{N}(0, I)$
- Factorizations $\{K_{XX} = Q_t T_t Q_t^T\}_{t=0}^T$ as a byproduct of BCG

Conjugate Gradients and Lanczos

• Eigendecomposition of K_{XX} in $\log \det K_{XX}$

 $\log \det K_{XX} = Tr(\log K_{XX}) = Tr(\log(QTQ^T)) = Tr(Q\log TQ^T)$

- Lanczos Algorithm closely related to Conjugate Gradient Descent
- α 's and β 's from CG used to construct tridiagonal Lanczos matrix T
- First column of $Q_t \in \mathbb{R}^{n \times p}$ is $z_t \sim \mathcal{N}(0, I)$
- Factorizations $\{K_{XX} = Q_t T_t Q_t^T\}_{t=0}^T$ as a byproduct of BCG
- Reuse stochastic trace estimation trick:

$$Tr(Q\log TQ^T) = \mathbb{E}[z^TQ_t\log T_tQ_t^Tz] = \mathbb{E}[e_1^T\log T_te_1]$$

Recap

- Precondition with low rank approximation $P^{-1} = (L_k L_k^T + \sigma I)^{-1}$
- $u_0 = K_{XX}^{-1} y$ and $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$ from mBCG
- $\log |K_{XX}| = \operatorname{Tr} [\log K_{XX}] = \mathbb{E}[e_1^T \log Te_1]$
- Modified training of Gaussian Process:

$$L(\theta|X,y) \propto \log |K_{XX}| + y^T K_{XX}^{-1} y$$

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

20 / 21

May 14, 2019

Recap

- Precondition with low rank approximation $P^{-1} = (L_k L_k^T + \sigma I)^{-1}$
- $u_0 = K_{XX}^{-1} y$ and $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$ from mBCG
- $\log |K_{XX}| = \operatorname{Tr} [\log K_{XX}] = \mathbb{E}[e_1^T \log Te_1]$
- Modified training of Gaussian Process:

$$L(\theta|X,y) \propto \log|K_{XX}| + y^T K_{XX}^{-1} y$$

$$\downarrow L(\theta|X, y) \propto \mathbb{E}\left[e_1^T \log T e_1\right] + y^T u_0$$

May 14, 2019 20 / 21

Recap

- Precondition with low rank approximation $P^{-1} = (L_k L_k^T + \sigma I)^{-1}$
- $u_0 = K_{XX}^{-1} y$ and $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$ from mBCG
- $\log |K_{XX}| = \operatorname{Tr} [\log K_{XX}] = \mathbb{E}[e_1^T \log Te_1]$
- Modified training of Gaussian Process:

May 14, 2019 20 / 21

< □ > < □ > < □ > < □ > < □ > < □ >

Recap

- Precondition with low rank approximation $P^{-1} = (L_k L_k^T + \sigma I)^{-1}$
- $u_0 = K_{XX}^{-1} y$ and $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$ from mBCG
- $\log |K_{XX}| = \operatorname{Tr} [\log K_{XX}] = \mathbb{E}[e_1^T \log Te_1]$
- Modified training of Gaussian Process:

$$L(\theta|X,y) \propto \log |K_{XX}| + y^T K_{XX}^{-1} y$$

$$\frac{dL}{d\theta} = y^T K_{XX}^{-1} \frac{dK_{XX}}{d\theta} K_{XX}^{-1} y + \operatorname{Tr} \left[K_{XX}^{-1} \frac{dK_{XX}}{d\theta} \right]^T$$

$$\downarrow$$

$$L(\theta|X,y) \propto \mathbb{E} \left[e_1^T \log T e_1 \right] + y^T u_0$$

$$\frac{dL}{d\theta} = u_0^T \frac{dK_{XX}}{d\theta} u_0 + \mathbb{E} \left[u^T \frac{dK_{XX}}{d\theta} z \right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recap

- Precondition with low rank approximation $P^{-1} = (L_k L_k^T + \sigma I)^{-1}$
- $u_0 = K_{XX}^{-1} y$ and $\{u_t = K_{XX}^{-1} z_t\}_{t=0}^T$ from mBCG
- $\log |K_{XX}| = \operatorname{Tr} [\log K_{XX}] = \mathbb{E}[e_1^T \log Te_1]$
- Modified training of Gaussian Process:

$$L(\theta|X,y) \propto \log |K_{XX}| + y^T K_{XX}^{-1} y$$

$$\frac{dL}{d\theta} = y^T K_{XX}^{-1} \frac{dK_{XX}}{d\theta} K_{XX}^{-1} y + \operatorname{Tr} \left[K_{XX}^{-1} \frac{dK_{XX}}{d\theta} \right]^T$$

$$\downarrow$$

$$L(\theta|X,y) \propto \mathbb{E} \left[e_1^T \log T e_1 \right] + y^T u_0$$

$$\frac{dL}{d\theta} = u_0^T \frac{dK_{XX}}{d\theta} u_0 + \mathbb{E} \left[u^T \frac{dK_{XX}}{d\theta} z \right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Deep architectures compute layer-wise representations
- $\circ\,$ Single kernel parameters $\theta\,$ often insufficient

- Deep architectures compute layer-wise representations
- Single kernel parameters θ often insufficient

- Deep architectures compute layer-wise representations
- Single kernel parameters θ often insufficient

May 14, 2019

21 / 21

• Seperate inducing points and kernel parameters $\{\overline{X}, \overline{y}, \theta\}$

- Deep architectures compute layer-wise representations
- Single kernel parameters θ often insufficient

- Seperate inducing points and kernel parameters $\{\overline{X}, \overline{y}, \theta\}$
- Sample hidden representation from posterior distribution

May 14, 2019 21 / 21